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Abstract We review algorithms developed for nonnegative matrix factoriza-
tion (NMF) and nonnegative tensor factorization (NTF) from a unified view
based on the block coordinate descent (BCD) framework. NMF and NTF
are low-rank approximation methods for matrices and tensors in which the
low-rank factors are constrained to have only nonnegative elements. The non-
negativity constraints have been shown to enable natural interpretations and
allow better solutions in numerous applications including text analysis, com-
puter vision, and bioinformatics. However, the computation of NMF and NTF
remains challenging and expensive due the constraints. Numerous algorith-
mic approaches have been proposed to efficiently compute NMF and NTF.
We provide simplified explanations of several successful NMF and NTF algo-
rithms based on the BCD framework in constrained non-linear optimization.
The BCD framework readily explains the theoretical convergence properties of
several efficient NMF and NTF algorithms, which are consistent with exper-
imental observations reported in literature. We also discuss algorithms that
do not fit in the BCD framework contrasting them from those based on the
BCD framework. With insights acquired from the unified perspective, we also
propose efficient algorithms for updating NMF when there is a small change
in the reduced dimension or in the data. The effectiveness of the proposed up-
dating algorithms are validated experimentally with synthetic and real-world
data sets.
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1 Introduction

Nonnegative matrix factorization (NMF) is a dimension reduction and fac-
tor analysis method. Many dimension reduction techniques are closely related
to the low-rank approximations of matrices, and NMF is special in that the
low-rank factor matrices are constrained to have only nonnegative elements.
The nonnegativity reflects the inherent representation of data in many ap-
plication areas, and the resulting low-rank factors lead to physically natural
interpretations [60]. NMF was first introduced by Paatero and Tapper [68]
as positive matrix factorization and subsequently popularized by Lee and Se-
ung [60]. Over the last decade, NMF has received enormous attention and
has been successfully applied to a broad range of important problems in areas
including text mining [71,78], computer vision [63,44], bioinformatics [10,21,
49], spectral data analysis [70], and blind source separation [20] among many
others.

Suppose a nonnegative matrix A ∈ R
M×N is given. For a given integer

K < min {M,N}, the goal of NMF is to find two matrices W ∈ R
M×K and

H ∈ R
N×K having only nonnegative elements such that

A ≈WHT . (1)

According to Eq. (1), each data point, which is represented as a column in
A, can be approximated by an additive combination of the nonnegative basis
vectors, which are represented as columns in W. Matrices W and H are found
by solving an optimization problem defined with Frobenius norm, Kullback-
Leibler divergence [61], or other divergences [22]. In this paper, we focus on the
NMF based on Frobenius norm, which is the most commonly used formulation:

min
W,H

f(W,H) = ‖A−WHT ‖2F (2)

subject to W ≥ 0,H ≥ 0.

The constraints in Eq. (2) mean that all the elements in W and H are nonneg-
ative. Eq. (2) is a non-convex optimization problem with respect to variables
W and H, and finding its global minimum is NP-hard [75]. A good algorithm
therefore is expected to compute a local minimum of Eq. (2).

Our first goal in this paper is to provide an overview of algorithms de-
veloped to solve Eq. (2) from a unifying perspective. Our review is organized
based on the block coordinate descent (BCD) method in non-linear optimiza-
tion, within which we show that most successful NMF algorithms and their
convergence behavior can be explained. Among numerous algorithms studied
for NMF, the most popular is the multiplicative updating rule by Lee and
Seung [61]. This algorithm has an advantage of being simple and easy to im-
plement, and it has contributed greatly to the popularity of NMF. However,
slow convergence of the multiplicative updating rule has been pointed out [38,
65], and more efficient algorithms equipped with stronger theoretical conver-
gence property have been introduced. The efficient algorithms are based on
either the alternating nonnegative least squares (ANLS) framework [65,50,
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54] or the hierarchical alternating least squares (HALS) method [18,17]. We
show that these methods can be derived using one common framework of the
BCD method and then characterize some of the most promising NMF algo-
rithms in Section 2. Algorithms for accelerating the BCD-based methods as
well as algorithms that do not fit in the BCD framework are summarized in
Section 3, where we explain how they differ from the BCD-based methods. In
the ANLS method, the subproblems appear as the nonnegativity constrained
least squares (NLS) problems. Much research has been devoted to design NMF
algorithms based on efficient methods to solve the NLS subproblems [65,50,54,
48,16,40]. A review of many successful algorithms for the NLS subproblems is
provided in Section 4 with discussion on their advantages and disadvantages.

Extending our discussion to low-rank approximations of tensors, we show
that algorithms for some nonnegative tensor factorization (NTF) can similarly
be elucidated based on the BCD framework. Tensors are mathematical objects
for representing multidimensional arrays; vectors and matrices are first-order
and second-order special cases of tensors, respectively. The canonical decom-
position (CANDECOMP) [13] or the parallel factorization (PARAFAC) [41],
which we denote by the CP decomposition, is one of natural extensions of
the singular value decomposition to higher order tensors. The CP decompo-
sition with nonnegativity constraints imposed on the loading matrices [17,19,
51,55,30,77], which we denote by nonnegative CP (NCP), can be computed
in a way that is similar to the NMF computation. We introduce details of the
NCP decomposition and summarize its computation methods based on the
BCD method in Section 5.

Lastly, besides providing a unified perspective, our review leads to the
realizations of NMF in more dynamic environments. A common such case
arise when we have to compute NMF for several K values in Eq. (2), which is
often needed to determine a proper K value from data. In this paper, based
on insights from the unified perspective, we propose an efficient algorithm for
updating NMF when K varies. We show how this method can compute NMFs
for a set of different K values with much less computational burden. Another
case is that NMF needs to be updated efficiently for a data set which keeps
changing from adding new data or deleting obsolete data. This often occurs
when the matrices represent data from time-varying signals in computer vision
[11] or text mining [12]. We propose an updating algorithm taking advantage
of the fact that most of data are overlapped so that we do not have to run
NMF from scratch. Algorithms for these cases are discussed in Section 7, and
their experimental validations are provided in Section 8.

Our discussion is focused on the algorithmic developments of NMF formu-
lated as in Eq. (2). Many other interesting aspects of NMF are therefore not
covered in this paper. In Section 9, we briefly discuss other aspects of NMF
and conclude the paper.

Notations. The notations used in this paper are as follows. A lowercase
or an uppercase letter, such as x or X , is used to denote a scalar; a boldface
lowercase letter, such as x, is used to denote a vector; a boldface uppercase
letter, such as X, is used to denote a matrix; and a boldface Euler script letter,
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such as X, is used to denote a tensor of order three or higher. Indices typically
start from 1 to its uppercase letter: For example, n ∈ {1, · · · , N}. Elements of
a sequence of vectors, matrices, or tensors are denoted by superscripts within
parentheses, such as X(1), · · · ,X(N), and the entire sequence is denoted by
{

X(n)
}

. When matrix X is given, (X)·i or x·i denotes its ith column, (X)i·
or xi· denotes its ith row, and xij denotes its (i, j)th element. For simplicity,
we denote the ith column of X by xi (without a dot). We denote the set of
nonnegative real numbers by R+, and X ≥ 0 indicates that the elements of
X are nonnegative. The notation [X]+ is used to denote a matrix that is the
same as X except that all its negative elements are set as zero. Throughout
the paper, a nonnegative matrix or a nonnegative tensor refers to a matrix or
a tensor with only nonnegative elements. For a matrix X, we denote the null
space of X by null(X).

2 A Unified View - BCD Framework for NMF

The block coordinate descent (BCD) method is a divide-and-conquer strategy
that can be generally applied to non-linear optimization problems. It divides
variables into several disjoint subgroups and iteratively minimize the objective
function with respect to the variables of each subgroup at a time. We first
introduce the BCD framework and its convergence properties and then explain
several NMF algorithms under the framework.

Consider a constrained non-linear optimization problem as follows:

min f(x) subject to x ∈ X , (3)

where X is a closed convex subset of RN . An important assumption to be
exploited in the BCD framework is that set X is represented by a Cartesian
product:

X = X1 × · · · × XM , (4)

where Xm, m = 1, · · · ,M , is a closed convex subset of RNm satisfying N =
∑M

m=1Nm. Accordingly, vector x is partitioned as x = (x1, · · · ,xM ) so that
xm ∈ Xm for m = 1, · · · ,M . The BCD method solves for xm fixing all other

subvectors of x in a cyclic manner. That is, if x(i) = (x
(i)
1 , · · · ,x(i)

M ) is given
as the current iterate at the ith step, the algorithm generates the next iterate

x(i+1) = (x
(i+1)
1 , · · · ,x(i+1)

M ) block by block, according to the solution of the
following subproblem:

x(i+1)
m ← argmin

ξ∈Xm

f(x
(i+1)
1 , · · · ,x(i+1)

m−1 , ξ,x
(i)
m+1, · · · ,x

(i)
M ). (5)

Also known as a non-linear Gauss-Siedel method [5], this algorithm updates
one block each time, always using the most recently updated values of other
blocks xm̃, m̃ 6= m. This is important since it ensures that after each update
the objective function value does not increase. For a sequence

{

x(i)
}

where

each x(i) is generated by the BCD method, the following property holds.
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Theorem 1 Suppose f is continuously differentiable in X = X1 × · · · × XM ,
where Xm, m = 1, · · · ,M , are closed convex sets. Furthermore, suppose that
for all m and i, the minimum of

min
ξ∈Xm

f(x
(i+1)
1 , · · · ,x(i+1)

m−1 , ξ,x
(i)
m+1, · · · ,x

(i)
M )

is uniquely attained. Let
{

x(i)
}

be the sequence generated by the block coor-

dinate descent method as in Eq. (5). Then, every limit point of
{

x(i)
}

is a
stationary point. The uniqueness of the minimum is not required when M is
two.

The proof of this theorem for an arbitrary number of blocks is shown in Bert-
sekas [5], and the last statement regarding the two-block case is due to Grippo
and Sciandrone [39]. For a non-convex optimization problem, most algorithms
only guarantee the stationarity of a limit point [65].

When applying the BCD method to a constrained non-linear program-
ming problem, it is critical to wisely choose a partition of X , whose Cartesian
product constitutes X . An important criterion is whether the subproblems in
Eq. (5) are efficiently solvable: For example, if the solutions of subproblems
appear in a closed form, each update can be computed fast. In addition, it is
worth checking how the solutions of subproblems depend on each other. The
BCD method requires that the most recent values need to be used for each
subproblem in Eq (5). When the solutions of subproblems depend on each
other, they have to be computed sequentially to make use of the most recent
values; if solutions for some blocks are independent from each other, however,
simultaneous computation of them would be possible. We discuss how dif-
ferent choices of partitions lead to different NMF algorithms. Three cases of
partitions are shown in Fig. 1, and each case is discussed below.

2.1 BCD with Two Matrix Blocks – ANLS Method

In Eq. (2), the most natural partitioning of the variables is the two blocks
representing W and H, as shown in Fig. 1-(a). In this case, following the BCD
method in Eq. (5), we take turns solving

W ← argmin
W≥0

f(W,H) and H← argmin
H≥0

f(W,H). (6)

These subproblems can be written as

min
W≥0

‖HWT −AT ‖2F and (7a)

min
H≥0
‖WHT −A‖2F . (7b)

Since the subproblems in Eqs. (7) are the nonnegativity constrained least
squares (NLS) problems, the two-block BCD method has been called the al-
ternating nonnegative least square (ANLS) framework [65,50,54]. Even though
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W

H
T

(a) Two matrix blocks

W

H
T

(b) 2K vector blocks

W

H
T

(c) K(M +N) scalar blocks

Fig. 1 Different choices of block partitions for the BCD method for NMF where W ∈
R
M×K
+ and H ∈ R

N×K
+ . In each case, the highlighted part is updated fixing all the rest.

the subproblems are convex, they do not have a closed-form solution, and a nu-
merical algorithm for the subproblem has to be provided. Several approaches
for solving the NLS subproblems have been proposed in NMF literature [65,
50,54,48,16,40], and we discuss them in Section 4. According to Theorem 1,
the convergence property of the ANLS framework can be stated as follows.

Corollary 1 If a minimum of each subproblem in Eqs. (7) is attained in each

step, every limit point of the sequence {(W,H)(i)} generated by the ANLS
framework is a stationary point of Eq. (2).

Note that a minimum is not required to be unique for the convergence result
to hold because we have only two blocks [39]. Therefore, H in Eq. (7a) or W
in Eq. (7b) need not be of full column rank for the property in Corollary 1 to
hold. On the other hand, some numerical methods for the NLS subproblems
require the full rank conditions so that they return a solution that attains a
minimum. We discuss them more in Section 4. See also regularization methods
in Section 2.4.

Subproblems in Eqs. (7) can be decomposed into independent NLS prob-
lems with a single right-hand side vector. For example, we have

min
W≥0

‖HWT −AT ‖2F =

M
∑

m=1

min
wm·≥0

‖HwT
m· − aTm·‖2F , (8)

and we can solve the problems in the second term independently. This view
corresponds to a BCD method with M +N vector blocks, in which each block
corresponds to a row of W or H. In literature, however, this view has not been
emphasized because often it is more efficient to solve the NLS problems with
multiple right-hand sides altogether. See also Section 4.

2.2 BCD with 2K Vector Blocks - HALS/RRI Method

Let us now partition the unknowns into 2K blocks in which each block is a
column of W or H, as shown in Fig. 1-(b). In this case, it is easier to consider
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the objective function in the following form:

f(w1, · · · ,wK ,h1, · · · ,hK) = ‖A−
K
∑

k=1

wkh
T
k ‖2F , (9)

where W = [w1, · · ·wK ] ∈ R
M×K
+ and H = [h1, · · · ,hK ] ∈ R

N×K
+ . The

form in Eq. (9) represents that A is approximated by the sum of K rank-one
matrices.

Following the BCD scheme, we can minimize f by iteratively solving

wk ← argmin
wk≥0

f(w1, · · · ,wK ,h1, · · · ,hK)

for k = 1, · · · ,K, and

hk ← argmin
hk≥0

f(w1, · · · ,wK ,h1, · · · ,hK)

for k = 1, · · · ,K. These subproblems appear as

min
w≥0
‖hkw

T −RT
k ‖2F and min

h≥0
‖wkh

T −Rk‖2F , (10)

where

Rk = A−
K
∑

k̃=1,k̃ 6=k

wk̃h
T

k̃
. (11)

A promising aspect of this 2K block partitioning is that each subproblem in
Eq. (10) has a closed-form solution, as characterized in the following theorem.

Theorem 2 Consider a minimization problem

min
v≥0
‖uvT −G‖2F (12)

where G ∈ R
M×N and u ∈ R

M are given. If u is a nonzero vector, v = [GTu]+
uTu

is the unique solution for Eq. (12), where
(

[GTu]+
)

n
= max(

(

GTu
)

n
, 0) for

n = 1, · · · , N .

Proof Letting vT = (v1, · · · , vN ), we have

min
v≥0
‖uvT −G‖2F =

N
∑

n=1

min
vn≥0

‖uvn − gn‖22

where G = [g1, · · · ,gN ], and the problems in the second term are independent
with each other. Let h(·) be h(vn) = ‖uvn−gn‖22 = ‖u‖22v2n−2vnuTgn+‖gn‖22.
Since ∂h

∂vn
= 2(vn‖u‖22 − gT

nu), if g
T
nu ≥ 0, it is clear that the minimum value

of h(vn) is attained at vn =
gT
nu

uTu
. If gT

nu < 0, the value of h(vn) increases as
vn becomes larger than zero, and therefore the minimum is attained at vn = 0

. Combining these two cases, the solution can be expressed as vn =
[gT

nu]+
uTu

.
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Using Theorem 2, the solutions of Eq. (10) can be stated as

wk ←
[Rkhk]+
‖hk‖22

and hk ←
[RT

kwk]+
‖wk‖22

. (13)

This 2K-block BCD algorithm has been studied under the name of the hier-
archical alternating least squares (HALS) method by Cichochi et al. [18,17]
and the rank-one residue iteration (RRI) independently by Ho [42]. In view
of Theorem 1, the convergence property of the HALS/RRI algorithm can be
written as follows.

Corollary 2 If the columns of W and H remain nonzero throughout all the
iterations and if the minimum of each problem in Eq. (10) is uniquely attained,

every limit point of the sequence {(W,H)
(i)} generated by the HALS/RRI

algorithm is a stationary point of Eq. (2).

In practice, a zero column could easily occur in W orH during the HALS/RRI
algorithm. This happens if hk ∈ null(Rk), wk ∈ null(RT

k ), Rkhk ≤ 0, or
RT

kwk ≤ 0. To avoid zero columns, in [33,18], a small positive number is
used for the maximum operator in Eq. (13): That is, max(·, ǫ) with a small
positive number ǫ such as 10−16 is used instead of max(·, 0). The HALS/RRI
algorithm with this modification often shows faster convergence compared to
other BCD methods or previously developed methods [54,35]. See Section 3.1
for acceleration techniques for the HALS/RRI method, and see Section 6.2 for
more discussion on experimental comparisons.

For an efficient implementation, it is not necessary to explicitly compute
Rk. Replacing Rk in Eq. (13) with the expression in Eq. (11), the solutions
can be rewritten as

wk ←
[

wk +
(AH)·k − (WHTH)·k

(HTH)kk

]

+

and (14a)

hk ←
[

hk +
(ATW)·k − (HWTW)·k

(WTW)kk

]

+

. (14b)

The choice of update formulae is related with the choice of an update order.
Two versions of an update order can be considered:

w1 → h1 → · · · → wK → hK (15)

and
w1 → · · · → wK → h1 → · · · → hK . (16)

When using Eq. (13), the update order in Eq. (15) is more efficient because Rk

is explicitly computed and then used to update both wk and hk. When using
Eqs. (14), although either Eq. (15) or Eq. (16) can be used, Eq. (16) tends to be
more efficient in environments such as MATLAB. The convergence property
in Corollary 2 is invariant of the choice of these orders. To update all the
elements in W and H, Eq. (13) with the ordering of Eq. (15) require 8KMN+
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3K(M + N) floating point operations, whereas Eqs. (14) with either choice
of ordering require 4KMN + (4K2 + 6K)(M +N) floating point operations.
When K ≪ min(M,N), the latter is more efficient. Moreover, the memory
requirements of Eqs. (14) is smaller because Rk need not be stored. For more
details, see Cichochi and Phan [17].

2.3 BCD with K(M +N) Scalar Blocks

In one extreme, the unknowns can be partitioned into K(M + N) blocks of
scalars, as shown in Fig. 1-(c). In this case, every element of W and H is
considered as a block in the context of Theorem 1. To this end, it helps to
write the objective function as a quadratic function of scalar wmk or hnk
assuming all other elements in W and H are fixed:

f(wmk) = ‖(am· −
∑

k̃ 6=k

wmk̃h
T

·k̃
)− wmkh

T
·k‖22 + const, (17a)

f(hnk) = ‖(a·n −
∑

k̃ 6=k

w·k̃hnk̃)−w·khnk‖22 + const, (17b)

where am· and a·n denote the mth row and the nth column of A, respectively.
According to the BCD framework, we iteratively update each block by

wmk ← argmin
wmk≥0

f(wmk)

=

[

wmk +
(AH)mk − (WHTH)mk

(HTH)kk

]

+

(18a)

hnk ← argmin
hnk≥0

f(hnk)

=

[

hnk +
(ATW)nk − (HWTW)nk

(WTW)kk

]

+

. (18b)

The updates of wmk and hnk are independent of all other elements in the
same column. Therefore, it is possible to update all the elements in the same
column of W and H simultaneously. Once we organize the update of Eqs. (18)
column-wise, the result is the same as Eqs. (14). That is, a particular arrange-
ment of the BCD method with scalar blocks is equivalent to the BCD method
with 2K vector blocks discussed in Section 2.2. Accordingly, the HALS/RRI
method can be derived by the BCD method either with vector blocks or with
scalar blocks. On the other hand, it is not possible to simultaneously solve for
the elements in the same row of W or H because their solutions depend on
each other. The convergence property of the scalar block case is similar to that
of the vector block case.

Corollary 3 If the columns of W and H remain nonzero throughout all the
iterations and if the minimum of each problem in Eqs. (18) is uniquely attained,
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every limit point of the sequence {(W,H)
(i)} generated by the block coordinate

descent method with K(M +N) scalar blocks is a stationary point of Eq. (2).

The multiplicative updating rule [61] also focuses on each element in its deriva-
tion. However, the multiplicative updating rule is different from the scalar
block BCD method in a sense that the solution updated for each element is
not the optimal one for the subproblems in Eq. (18). We discuss the multi-
plicative updating rule more in Section 3.2.

2.4 BCD for Some Variants of NMF

To incorporate extra constraints or prior information into the NMF formula-
tion in Eq. (2), various regularization terms can be added. In general, we can
consider an objective function as follows:

min
W,H≥0

∥

∥

∥A−WHT
∥

∥

∥

2

F
+ φ(W) + ψ(H), (19)

where φ(·) and ψ(·) are regularization terms that often involve matrix or vector
norms. Here we discuss the Frobenius-norm and the l1-norm regularization and
show how NMF regularized by those norms can be easily computed using the
BCD method. Scalar parameters α or β in this subsection are used to control
the strength of regularization.

The Frobenius-norm regularization [70,50] corresponds to

φ(W) = α‖W‖2F and ψ(H) = β ‖H‖2F . (20)

The Frobenius-norm regularization may be used to prevent the elements of W
or H from growing too large in their absolute values. In addition, it can be
adopted to stabilize the BCD methods as explained below. In the two matrix
block case, since the uniqueness of the minimum of each subproblem is not
required according to Corollary 1, H in Eq. (7a) or W in Eq. (7b) need not
be of full column rank. The full column rank condition is however required for
some algorithms for the NLS subproblems, as discussed in Section 4. As shown
below, the Frobenius-norm regularization ensures that the NLS subproblems
of the two matrix block case are always defined with a matrix of full column
rank. Similarly in the 2K vector block or the K(M +N) scalar block case, the
condition that wk and hk remain nonzero throughout all the iterations can be
relaxed when the Frobenius-norm regularization is used.

Applying the BCD framework with two matrix blocks to Eq. (19) with the
regularization term in Eq. (20), W can be updated as

W← arg min
W≥0

∥

∥

∥

∥

(

H√
αIK

)

WT −
(

AT

0K×M

)∥

∥

∥

∥

2

F

, (21)

where IK is a K×K identity matrix and 0K×M is a K×M matrix containing
only zeros. Matrix H can be updated with a similar reformulation. Clearly, if
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α is nonzero,

(

H√
αIK

)

in Eq. (21) is of full column rank. Applying the BCD

framework with two vector blocks, a column of W is updated as

wk ←
[

(HTH)kk
(HTH)kk + α

wk +
(AH)·k − (WHTH)·k

(HTH)kk + α

]

+

. (22)

If α is nonzero, the solution of Eq. (22) is uniquely defined without requiring
hk to be a nonzero vector.

The l1-norm regularization has been adopted to promote sparsity in the
factor matrices. Sparsity was shown to improve the part-based interpretation
[44] or the clustering ability of NMF [49,52]. When sparsity is desired on
matrix H, the l1-norm regularization can be set as

φ(W) = α‖W‖2F and ψ(H) = β

N
∑

n=1

‖hn·‖21, (23)

where hn· represents the n
th row of H. The l1-norm term of ψ(H) in Eq. (23)

promotes sparsity on H while the Frobenius norm term of φ(W) is needed to
prevent W from growing too large. Similarly, sparsity can be imposed on W

or on both W and H.
Applying the BCD framework with two matrix blocks to Eq. (19) with the

regularization term in Eq. (23), W can be updated as Eq. (21), and H can be
updated as

H← argmin
H≥0

∥

∥

∥

∥

(

W√
β11×K

)

HT −
(

A

01×N

)∥

∥

∥

∥

2

F

, (24)

where 11×K is a row vector of length K containing only ones. Applying the
BCD framework with 2K vector blocks, a column of W is updated as Eq. (22),
and a column of H is updated as

hk ←
[

hk +
(ATW)·k −H((WTW)·k + β1K)

(WTW)kk + β

]

+

. (25)

Note that the l1-norm term in Eq. (23) is written as the sum of the squares
of the l1-norm of the columns of H. Alternatively, we can impose the l1-norm
based regularization without squaring: That is,

φ(W) = α‖W‖2F and ψ(H) = β

N
∑

n=1

K
∑

k=1

|hnk| . (26)

Although both Eq. (23) and Eq. (26) promote sparsity, the squared form in
Eq. (23) is easier to handle with the two matrix block case, as shown above.
Applying the 2K vector BCD framework on Eq. (19) with the regularization
term in Eq. (26), the update for a column of h is written as

hk ←
[

hk +
(ATW)·k − (HWTW)·k + 1

2β1K

(WTW)kk

]

+

.
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For more information, see [17], Section 4.7.4 of [20], and Section 4.5 of [42].
When the BCD framework with two matrix blocks is used with the regular-
ization term in Eq. (26), a custom algorithm for l1-regularized least squares
problem has to be involved: See, e.g., [28].

3 Acceleration and Other Approaches

3.1 Accelerated Methods

The BCD methods described so far have been very successful for the NMF
computation. In addition, a few researchers suggested useful techniques to ac-
celerate the methods, as summarized below. Korattikara et al. [57] proposed a
subsampling strategy to improve the two matrix block (i.e., ANLS) case. Their
main idea is to start with a small factorization problem, which is obtained by
random subsampling, and gradually increase the size of subsamples. Under
the assumption of asymptotic normality, the decision whether to increase the
size is made based on statistical hypothesis testing. Gillis and Glineur [36]
proposed a multi-level approach, which also gradually increase the problem
size based on a multi-grid representation. The method in [36] is applicable
not only to the ANLS methods, but also to the HALS/RRI method and the
multiplicative updating method.

Hsieh and Dhillon [45] proposed a greedy coordinate descent method. Un-
like the HALS/RRI method, in which every element is updated exactly once
per iteration, they selectively choose elements whose update will lead to the
largest decrease of the objective function. Although their method does not fol-
low the BCD framework, they showed that every limit point generated by their
method is a stationary point. Gillis and Glineur [35] also proposed an accel-
eration scheme for the HALS/RRI and the multiplicative updating method.
Unlike the standard versions, the approach in [35] repeats updating the el-
ements of W several times before updating the elements of H. Noticeable
improvements in the speed of convergence is reported.

3.2 Multiplicative Updating Rules

The multiplicative updating rule [61] is by far the most popular algorithm for
NMF. In this algorithm, each element is updated through multiplications in
the following form:

wmk ← wmk

(AH)mk

(WHTH)mk

, hnk ← hnk
(ATW)nk

(HWTW)nk
. (27)

Since elements are updated in this multiplication form, the nonnegativity is
always satisfied when A is nonnegative. This algorithm can be contrasted
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with the HALS/RRI algorithm as follows. The element-wise gradient descent
updates for Eq. (2) can be written as

wmk ← wmk + λmk

[

(AH)mk − (WHTH)mk

]

and

hnk ← hnk + µnk

[

(ATW)nk − (HWTW)nk

]

,

where λmk and µnk represent step-lengths. The multiplicative updating rule
is obtained by taking

λmk =
wmk

(WHTH)mk

and µnk =
hnk

(HWTW)nk
, (28)

whereas the HALS/RRI algorithm interpreted as the BCD method with scalar
blocks as in Eqs. (18) is obtained by taking

λmk =
1

(HTH)kk
and µnk =

1

(WTW)kk
. (29)

The step-lengths chosen in the multiplicative updating rule is conservative
enough so that the result is always nonnegative. On the other hand, the step-
lengths chosen in the HALS/RRI algorithm could potentially lead to a non-
negative value, and therefore the projection [·]+ is needed. Although the con-
vergence property of the BCD framework holds for the HALS/RRI algorithm
as in Corollary 3, it does not hold for the multiplicative updating rule since
the step-lengths in Eq. (28) does not achieve the optimal solution. In practice,
the convergence of the HALS/RRI algorithm is much faster than that of the
multiplicative updating.

Lee and Seung [61] showed that under the multiplicative updating rule,
the objective function in Eq. (2) is non-increasing. However, it is unknown
whether it attains a stationary point. Gonzalez and Zhang [38] demonstrated
the difficulty, and the slow convergence of multiplicative updates has been
further reported in several papers [65,50,54,53]. As an effort to overcome this
issue, Lin [64] proposed a modified update rule for which every limit point is
stationary; however, after this modification, the update rule becomes additive
instead of multiplicative.

3.3 Alternating Least Squares Method

In the two-block BCDmethod of Section 2.1, it is required to find a minimum of
the nonnegativity-constrained least squares (NLS) subproblems in Eqs. (7). In
some early work on NMF, Berry et al. [4] has proposed to approximately solve
these NLS subproblems hoping to accelerate the algorithm. In their alternating
least squares (ALS) method, they solved the least squares problems ignoring
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the nonnegativity constraints, and then negative elements in the computed
solution matrix are simply set to zeros. That is, W and H are updated as

WT ←
[

(

HTH
)−1 (

HTAT
)

]

+
and (30a)

HT ←
[

(

WTW
)−1 (

WTA
)

]

+
. (30b)

When HTH or WTW is rank-deficient, the Moore-Penrose pseudoinverse
maybe used instead of the inverse operator. Unfortunately, the update val-
ues in Eqs. (30) are not the minimizers of the subproblems in Eqs. (7). Hence,
although each subproblems of the ALS method can be solved efficiently, the
convergence property in Corollary 1 is not applicable to the ALS method. In
fact, the ALS method does not necessarily decrease the objective function after
each iteration [54].

It is interesting to note that the HALS/RRI method does not have this
problem although the same element-wise projection is used. In the HALS/RRI
method, a subproblem in the form of

min
x≥0

∥

∥bxT −C
∥

∥

2

F
(31)

with b ∈ R
M and C ∈ R

M×N is solved with x←
[

CTb
bTb

]

+
, which is an optimal

solution of Eq. (31) as shown in Theorem 2. On the other hand, in the ALS
algorithm, a subproblem in the form of

min
x≥0
‖Bx− c‖22 (32)

with B ∈ R
M×N and c ∈ R

M is solved with x←
[

(

BTB
)−1

BT c
]

+
, which is

not an optimal solution of Eq. (32).

3.4 Successive Rank One Deflation

Some algorithms have been designed to compute NMF based on successive
rank-one deflation. This approach is motivated from the fact that the singu-
lar value decomposition (SVD) can be computed through successive rank-one
deflation. However, when considered for NMF, the rank-one deflation method
has a few issues as we summarize below.

Let us first recapitulate the deflation approach for SVD. Consider a matrix
A ∈ R

M×N of rank R, and suppose its SVD is written as

A = UΣVT =

R
∑

r=1

σrurv
T
r , (33)

where U =
[

u1 · · · uR

]

∈ R
M×R and V =

[

v1 · · · vR

]

∈ R
N×R are orthogo-

nal matrices, and Σ ∈ R
R×R is a diagonal matrix having σ1 ≥ · · · ≥ σR ≥ 0 in



Algorithms for NMF and NTF: A Unified View 15

the diagonal. The rank-K SVD for K < R is a truncation of Eq. (33) obtained
by taking only the first K singular values and corresponding singular vectors:

ÃK = ŨKΣ̃KṼT
K =

K
∑

k=1

σkukv
T
k ,

where ŨK ∈ R
M×K and ṼK ∈ R

N×K are sub-matrices of U and V obtained
by taking the leftmost K columns. It is well-known that the best rank-K ap-
proximation of A in terms of minimizing the l2-norm or the Frobenius norm
of the residual matrix is the rank-K SVD: See Theorem 2.5.3 in Page 72 of
Golub and Van Loan [37]. The rank-K SVD can be computed through suc-
cessive rank one deflation as follows. First, the best rank-one approximation,
σ1u1v

T
1 , is computed with an efficient algorithm such as the power iteration.

Then, the residual matrix is obtained as Ẽ1 = A − σ1u1v
T
1 =

∑R

r=2 σrurv
T
r ,

and the rank of Ẽ1 is R− 1. For the residual matrix Ẽ1, its best rank-one ap-
proximation, σ2u2v

T
2 , is obtained, and the residual matrix Ẽ2, whose rank is

R− 2, can be found in the same manner: Ẽ2 = Ẽ1−σ2u2v
T
2 =

∑R

r=3 σrurv
T
r .

Repeating this process for K times, one can obtain the rank-K SVD.

When it comes to NMF, a notable theoretical result about nonnegative
matrices relates SVD and NMF when K = 1. The following theorem, which
extends the Perron-Frobenius theorem [3,43], is shown in Chapter 2 of Berman
and Plemmons [3].

Theorem 3 For any nonnegative matrix A ∈ R
N×N
+ , the eigenvalue of A

with the largest magnitude is nonnegative, and there exists a nonnegative eigen-
vector corresponding to the largest eigenvalue.

A direct consequence of Theorem 3 is the nonnegativity of the best rank-one
approximation.

Corollary 4 (Nonnegativity of best rank-one approximation) For any
nonnegative matrix A ∈ R

M×N
+ , the following minimization problem

min
u∈RM ,v∈RN

∥

∥A− uvT
∥

∥

2

F
. (34)

has an optimal solution satisfying u ≥ 0 and v ≥ 0.

Another way to realizing Corollary 4 is using the SVD. Observing that, for a
nonnegative matrix A ∈ R

M×N
+ and for any vectors u ∈ R

M and v ∈ R
N ,

∥

∥A− uvT
∥

∥

2

F
=

M
∑

m=1

N
∑

n=1

(amn − umvn)2

≥
M
∑

m=1

N
∑

n=1

(amn − |um| |vn|)2 , (35)
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element-wise absolute values can be taken from the left and right singular
vectors that correspond to the largest singular value to achieve the best rank-
one approximation satisfying nonnegativity. There might be other optimal
solutions of Eq. (34) involving negative numbers: See [32].

The elegant property in Corollary 4, however, is not readily applicable
when K > 2. After the best rank-one approximation matrix is deflated, the
residual matrix may contain negative elements, and then Corollary 4 is not
applicable any more. In general, successive rank-one deflation is not an optimal
approach for NMF computation. Let us take a look at a small example which
demonstrates this issue. Consider matrix A given as

A =





4 6 0
6 4 0
0 0 1



 .

The best rank-one approximation of A is shown as Â1 below. The residual is
Ê1 = A−A1, which contains negative elements:

Â1 =





5 5 0
5 5 0
0 0 0



 , Ê1 =





−1 1 0
1 −1 0
0 0 1



 .

One of the best rank-one approximations of Ê1 with nonnegativity constraints
is B2, and the residual matrix is E2:

B2 =





0 0 0
0 0 0
0 0 1



 , E2 =





−1 1 0
1 −1 0
0 0 0



 .

The nonnegative rank-two approximation obtained by this rank-one deflation
approach is

Â1 +B2 =





5 5 0
5 5 0
0 0 1



 .

However, the best nonnegative rank-two approximation ofA is in fact Â2 with
residual matrix Ê2:

Â2 =





4 6 0
6 4 0
0 0 0



 , Ê2 =





0 0 0
0 0 0
0 0 1



 .

Therefore, a strategy that successively finds the best rank-one approximation
with nonnegativity constraints and deflates in each step does not necessarily
lead to an optimal solution of NMF.

Due to this difficulty, some variations of rank-one deflation has been in-
vestigated for NMF. Biggs et al. [6] proposed a rank-one reduction algorithm
in which they look for a nonnegative submatrix that is close to a rank-one
approximation. Once such a submatrix is identified, they compute the best
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rank-one approximation using the power method and ignore the residual. Gillis
and Glineur [34] sought a nonnegative rank-one approximation under the con-
straint that the residual matrix remains element-wise nonnegative. Due to the
constraints, however, the problem of finding the nonnegative rank-one approx-
imation becomes more complicated and computationally expensive than the
power iteration. Optimization properties such as a convergence to a stationary
point has not been shown for these modified rank-one reduction methods.

It is worth noting the difference between the HALS/RRI algorithm, de-
scribed as the 2K vector block case in Section 2.2, and the rank-one deflation
method. These approaches are similar in that the rank-one problem with non-
negativity constraints is solved in each step, filling in the kth columns of W
and H with the solution for k = 1, · · · ,K. In the rank-one deflation method,
once the kth columns of W and H are computed, they are fixed and kept as a
part of the final solution before the (k + 1)th columns are computed. On the
other hand, the HALS/RRI algorithm updates all the columns through multi-
ple iterations until a local minimum is achieved. This simultaneous searching
for all 2K vectors throughout the iterations is necessary to achieve an optimal
solution due to the nonnegativity constraints, unlike in the case of SVD.

4 Algorithms for the Nonnegativity Constrained Least Squares

Problems

We review numerical methods developed for the NLS subproblems in Eqs. (7).
For discussion in this section, we consider the following notations:

min
X≥0
‖BX−C‖2F =

R
∑

r=1

‖Bxr − cr‖22 , (36)

where B ∈ R
P×Q, C = [c1, · · · , cR] ∈ R

Q×R, and X = [x1, · · · ,xR] ∈ R
Q×R.

We mainly discuss two groups of algorithms for the NLS problems. The first
group consists of the gradient descent and the Newton-type methods that are
modified to satisfy the nonnegativity constraints using a projection operator.
The second group consists of the active-set and the active-set-like methods,
in which zero and nonzero variables are explicitly kept track of and a sys-
tem of linear equations is solved at each iteration. We review these and some
other methods in the following; for more details, see Lawson and Hanson [58],
Bjork [8], and Chen and Plemmons [14].

To facilitate our discussion, we state a simple NLS problem with a single
right-hand side:

min
x≥0

g(x) = ‖Bx− c‖22. (37)

Eq. (36) may be solved by handling independent problems for each column of
X, whose form appears as Eq. (37). Otherwise, the problem in Eq. (36) can
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also be transformed into

min
x1,··· ,xR≥0

∥

∥

∥

∥

∥

∥

∥







B

. . .

B













x1

...
xR






−







c1
...
cR







∥

∥

∥

∥

∥

∥

∥

2

2

. (38)

4.1 Projected Iterative Methods

Projected iterative methods for the NLS problems are mainly based on the fact
that the objective function in Eq. (36) is differentiable and that the projection
to the nonnegative orthant is easy to compute. The first method of this type
proposed for NMF was the projected gradient method of Lin [65]. Their update
formula is written as

x(i+1) ←
[

x(i) − α(i)∇g(x(i))
]

+
, (39)

where x(i) and α(i) represent the variable and the step length at the ith it-
eration. Step length α(i) is chosen by a back-tracking line search to satisfy
Armijo’s rule with an optional stage that increases the step length. Kim et
al. [48] proposed a quasi-Newton method by utilizing the second order infor-
mation to improve convergence:

x(i+1) ←
([

y(i) − α(i)D(i)∇g(y(i))
]

+

0

)

, (40)

where y(i) is a subvector of x(i) with elements that are not optimal in terms of
the Karush-Kuhn-Tucker (KKT) conditions. They efficiently updated D(i) us-
ing the BFGS method and selected α(i) by a back-tracking line search.Whereas
Lin considered a stacked-up problem as in Eq. (38), the quasi-Newton method
by Kim et al. was applied to each column separately.

A notable variant of the projected gradient method is the Barzilai-Borwein
method [7]. Han et al. [40] proposed alternating projected Barzilai-Borwein
method for NMF. A key characteristic of the Barzilai-Borwein method in un-
constrained quadratic programming is that the step-length is chosen by a
closed-form formula without having to perform a line search:

x(i+1) ←
[

x(i) − α(i)∇g(x(i))
]

+
with α(i) =

sT s

yT s
, where

s = x(i) − x(i−1) and y = ∇g(x(i))−∇g(x(i−1)).

Due to the nonnegativity constraints, however, back-tracking line search still
had to be employed. Han et al. discussed a few variations of the Barzilai-
Borwein method for NMF and reported that the algorithms outperform Lin’s
method.

Many other methods have been developed. Merritt and Zhang [67] pro-
posed an interior point gradient method, and Friedlander and Hatz [30] used
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Algorithm 1 Outline of the Active-set Method for minx≥0 g(x) = ‖Bx− c‖22
(See [58] for more details)

1: Initialize x (typically with all zeros).
2: Set I,E (working sets) be indices representing zero and nonzero variables. Let xI and

xE denote the subvectors of x with corresponding indices, and let BI and BE denote
the submatrices of B with corresponding column indices.

3: for i = 1, 2, · · · do
4: Solve an unconstrained least squares problem, minz ‖BEz− c‖22, as

z←
(

BT
E BE

)−1
BT

E c. (41)

5: Check if the solution is nonegative and satisfies KKT conditions. If so, set xE ← z,
set xI with zeros, and return x as a solution. Otherwise, update x, I, and E.

6: end for

a two-metric projected gradient method in their study on nonnegative ten-
sor factorization. Zdunek and Cichocki [79] proposed a quasi-Newton method,
but its lack of convergence was pointed out in [48]. Zdunek and Cichocki [80]
also studied the projected Landweber method and the projected sequential
subspace method.

4.2 Active-set and Active-set-like Methods

The active-set method for the NLS problems is due to Lawson and Hanson
[58]. A key observation is that, if the zero and nonzero elements of the final
solution are known in advance, the solution can be easily computed by solving
an unconstrained least squares problem for the nonzero variables and setting
the rest to zeros. The sets of zero and nonzero variables are referred to as active
and passive sets, respectively. In the active-set method, so-called workings sets
are kept track of until the optimal active and passive sets are found. A rough
pseudo-code for the active-set method is shown in Algorithm 1.

Lawson and Hanson’s method has been a standard for the NLS problems,
but applying it directly to NMF is extremely slow. When used for NMF, it
can be accelerated in two different ways. The first approach is to use the
Cholesky or the QR decomposition to solve Eq. (41) and have the Cholesky
or QR factors updated by the Givens rotations [37]. The second approach,
which was proposed by Bro and De Jong [9] and Ven Benthem and Keenan
[74], is to identify common computations in solving the NLS problems with
multiple right-hand sides and to save the computation cost. More information
and experimental comparisons of these two approaches are provided in [54].

The active-set methods possess a property that the objective function de-
creases after each iteration; however, maintaining this property often limits
its scalability. A main computational burden of the active-set methods is in
solving systems of linear equations in Eq. (41); hence, the number of iterations
required until termination considerably affects the computation cost. In order
to achieve the monotonic decreasing property, typically only one variable is
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exchanged between working sets per iteration. As a result, when the number
of unknowns is large, the number of iterations required for termination grows,
slowing down the method.

Overcoming this difficulty, an active-set-like method was developed by Kim
and Park for NMF [54,53]. Their block principal pivoting method, which is
based on the work of Judice and Pires [47], allows the exchanges of multiple
variables between working sets. This method does not maintain the nonneg-
ativity of intermediate vectors and does not achieve the monotonic decrease
of the objective function value, but it requires a smaller number of iterations
until termination than the active set method. It is worth emphasizing that a
speed-up technique employed in both the active-set and the block principal
pivoting methods is particularly useful in NMF computation. The technique
was devised by Ven Benthem and Keenan [74] for the active-set method and
later adopted for the block principal pivoting method [54,53]. The key idea of
this technique is that when solving the NLS subproblems with multiple right-
hand sides, repetitive computation of Cholesky factorization can be identified
and avoided. For a detailed description, see [54].

4.3 Discussion and Other Methods

A main difference between the projected iterative methods and the active-set-
like methods for the NLS problems lies in their convergence and termination.
In projected iterative methods, a sequence of tentative solutions is generated
so that an optimal solution is approached in the limit. In practice, one has to
somehow stop iterations and return the current estimate, which might be only
an approximation of the solution. In the active-set and active-set-like methods,
in contrast, there is no concept of a limit point. Tentative solutions are gen-
erated with a goal of finding the optimal active and passive set partitioning,
which is guaranteed to be found in a finite number of iterations since there are
only a finite number of possible active and passive set partitionings. Once the
optimal active and passive sets are found, the methods terminate. There are
trade-offs of these behavior. While the projected iterative methods can return
an approximate solution after an arbitrary amount of time, the active-set and
active-set-like methods can only return a solution after they terminate. After
the termination, however, the active-set-like methods return an exact solu-
tion only subject to numerical rounding errors while the projected iterative
methods return an approximate solution.

Other approaches for solving the NLS problems can be considered as a
subroutine for the NMF computation. Bellavia et al. [2] have studied an in-
terior point Newton-like method, and Franc et al. [29] presented a sequen-
tial coordinate-wise method. Some observations about the NMF computation
based on these methods as well as other methods are offered in Cichocki et
al. [20]. Chu and Lin [16] proposed an algorithm based on low-dimensional
polytope approximation: Their algorithm is motivated by an geometrical inter-
pretation of NMF that data points are approximated by a simplicial cone [25].
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Different conditions are required for the NLS algorithms to guarantee con-
vergence to or a termination with a solution. The requirement of the projected
gradient method [65] is relatively mild as it only requires an appropriate selec-
tion of the step-length. Both the quasi-Newton method [48] and the interior
point gradient method [67] require that matrix B in Eq. (37) is of full column
rank. The active-set method [58,50] does not require the full-rank condition
as long as a zero vector is used for initialization [26]. In the block principal
pivoting method [53,54], on the other hand, the full-rank condition is required.
Since NMF is commonly used as a dimensionality reduction method, the ranks
of both W and H in Eqs. (7) typically remain full. When this condition is not
likely to be satisfied, the Frobenius-norm regularization of Section 2.4 can be
adopted to guarantee the full rank condition.

5 BCD Framework for Nonnegative CP

Our discussion on the low-rank factorizations of nonnegative matrices natu-
rally extends to those of nonnegative tensors. In this section, we discuss non-
negative CANDECOMP/PARAFAC (NCP) and explain how it can be com-
puted by the BCD framework. A few other decomposition models of higher
order tensors have been studied, and interested readers are referred to [56,1].
The organization of this section is similar to that of Section 2, and we will show
that the NLS algorithms reviewed in Section 4 can also be used to factorize
tensors.

Let us consider an N th-order tensor A ∈ R
M1×···×MN . For an integer K,

we are interested in finding nonnegative factor matrices H(1), · · · ,H(N) where
H(n) ∈ R

Mn×K for n = 1, · · · , N such that

A ≈ JH(1), · · · ,H(N)K, (42)

where

H(n) =
[

h
(n)
1 · · · h(n)

K

]

forn = 1, · · · , N and (43)

JH(1), · · · ,H(N)K =

K
∑

k=1

h
(1)
k ◦ · · · ◦ h

(N)
k . (44)

The ‘◦’ symbol represents the outer product of vectors, and a tensor in the

form of h
(1)
k ◦ · · · ◦ h

(N)
k is called a rank-one tensor. The model of Eq. (42) is

known as CANDECOMP/PARAFAC (CP) [13,41]: In the CP decomposition,
A is represented as a sum of K rank-one tensors. The smallest integer K
for which Eq. (42) holds as equality is called the rank of tensor A. Observe
that the CP decomposition reduces to a matrix decomposition if N = 2.
When A ∈ R

M1×···×MN

+ , the nonnegative CP decomposition is obtained by

adding nonnegativity constraints to the factor matrices H(1), · · · ,H(N). A
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corresponding optimization problem can be written as

min
H(1),··· ,H(N)

f(H(1), · · · ,H(N)) =
∥

∥

∥
A− JH(1), · · · ,H(N)K

∥

∥

∥

2

F
, (45)

s.t. H(n) ≥ 0 for n = 1, · · ·N.

We discuss algorithms for solving Eq. (45) [17,51,55,30] in this section. Toward
that end, we introduce definitions of some operations of tensors.

Mode-nmatricization. The mode-n matricization of a tensorA ∈ R
M1×···×MN ,

denoted by A<n>, is a matrix obtained by linearizing all indices in tensor A
except n. Specifically, A<n> is a matrix of size Mn ×

∏N

ñ=1,ñ6=nMñ, and the

(m1, · · · ,mN )th element of A is mapped to the (mn, J)
th element of A<n>

where

J = 1 +
N
∑

j=1

(mj − 1)Jj and Jj =

j−1
∏

l=1,l 6=n

Ml.

Mode-n fibers. The fibers of higher-order tensors are vectors obtained by
specifying all indices except one. Given a tensor A ∈ R

M1×···×MN , a mode-n
fiber denoted by am1···mn−1:mn+1···mN

is a vector of length Mn with all the ele-

ments havingm1, · · · ,mn−1,mn+1, · · · ,mN as indices for the 1st, · · · , (n− 1)
th
,

(n+ 2)th , · · · , N th orders. The columns and the rows of a matrix are the mode-
1 and the mode-2 fibers, respectively.
Mode-n product. The mode-n product of a tensor A ∈ R

M1×···×MN and a
matrix U ∈ R

J×Mn , denoted by A×n U, is a tensor obtained by multiplying
all mode-n fibers of A with the columns of U. The result is a tensor of size
M1 × · · · ×Mn−1 × J ×Mn+1 × · · · ×MN having elements as

(A×n U)m1···mn−1jmn+1···mN
=

Mn
∑

mn=1

xm1···mN
ujmn

.

In particular, the mode-n product of A and a vector u ∈ R
Mn is a tensor of

size M1 × · · · ×Mn−1 ×Mn+1 × · · · ×MN .
Khatri-Rao product. The Khatri-Rao product of two matrices A ∈ R

J1×L

and B ∈ R
J2×L, denoted by A⊙B ∈ R

(J1J2)×L, is defined as

A⊙B =











a11b1 a12b2 · · · a1LbL

a21b1 a22b2 · · · a2LbL

...
...

. . .
...

aJ11b1 aJ12b2 · · · aJ1LbL











.

5.1 BCD with N Matrix Blocks

A simple BCD method can be designed for Eq. (45) considering each of the
factor matrics H(1), · · · ,H(N) as a block. Using notations introduced above,
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the approximation model in Eq. (42) can be written as, for any n ∈ {1, · · · , N},

A<n> ≈ H(n)
(

B(n)
)T

, (46)

where

B(n) = H(N) ⊙ · · · ⊙H(n+1) ⊙H(n−1) ⊙ · · · ⊙H(1)

∈ R
(
∏N

ñ=1,ñ6=n
Mñ)×K . (47)

Eq. (46) simplifies the treatment of thisN matrix block case. AfterH(2), · · · ,H(N)

are initialized with some nonnegative elements, the following subproblem is
solved iteratively for n = 1, · · ·N :

H(n) ← argmin
H≥0

∥

∥

∥B
(n)HT −

(

A<n>
)T

∥

∥

∥

2

F
. (48)

Since the subproblem in Eq. (48) is an NLS problem, as in the matrix factoriza-
tion case in Section 2.1, this matrix-block BCD method is called the alternat-
ing nonnegative least squares (ANLS) framework [51,55,30]. The convergence
property of the BCD method in Theorem 1 yields the following corollary.

Corollary 5 If a unique solution exists for Eq. (48) and is attained for n =

1, · · · , N , then every limit point of the sequence {
(

H(1), · · · ,H(N)
)(i)} gener-

ated by the ANLS framework is a stationary point of Eq. (45).

In particular, if each of matrices B(n) is of full column rank, each subprob-
lem has a unique solution. Algorithms for the NLS subproblems discussed in
Section 4 can be used to solve Eq. (48).

For higher order tensors, the number of rows inB(n) and (A<n>)
T
,
∏N

ñ=1,ñ6=nMñ,

can be quite large. However, often B(n) and (A<n>)
T
do not need to be ex-

plicitly constructed. In most algorithms explained in Section. 4, it is enough to

haveB(n)T (A<n>)
T
and

(

B(n)
)T

B(n). One can easily verify thatB(n)T (A<n>)
T

can be obtained by successive mode-n products:

B(n)T
(

A<n>
)T

= A×1 H
(1) · · · ×(n−1) H

(n−1)

×(n) H
(n) · · · ×(N) H

(N). (49)

In addition,
(

B(n)
)T

B(n) can be obtained as

(

B(n)
)T

B(n) =
N
⊗

ñ=1,ñ6=n

(

H(ñ)
)T

H(ñ), (50)

where
⊗

represents element-wise multiplication.
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5.2 BCD with KN Vector Blocks

Another way to apply the BCD framework to Eq. (45) is treating each column
of H(1), · · · ,H(N) as a block. The columns are updated, for n = 1, · · ·N and
for k = 1, · · · ,K, by solving

h
(n)
k ←

argmin
h≥0

∥

∥

∥Jh
(1)
k , · · · ,h(n−1)

k ,h,h
(n+1)
k , · · · ,h(N)

k K−Rk

∥

∥

∥

2

F
. (51)

where

Rk = A−
K
∑

k̃=1,k̃ 6=k

h
(1)

k̃
◦ · · · ◦ h(N)

k̃
.

Using matrix notations, the problem in Eq. (51) can be rewritten as

h
(n)
k ← argmin

h≥0

∥

∥

∥b
(n)
k hT −

(

R<n>
k

)T
∥

∥

∥

2

F
, (52)

where R<n>
k is the mode-n matricization of Rk and

b
(n)
k = h

(N)
k ⊙ · · · ⊙ h

(n+1)
k ⊙ h

(n−1)
k ⊙ · · · ⊙ h

(1)
k

∈ R
(
∏N

ñ=1,ñ6=n
Mñ)×1. (53)

This vector-block BCD method corresponds to the HALS method by Cichocki
et al. for NTF [17,20]. The convergence property in Theorem 1 yields the
following corollary.

Corollary 6 If a unique solution exists for Eq. (52) and is attained for n =

1, · · · , N and for k = 1, · · · ,K, then every limit point of the sequence {
(

H(1), · · · ,H(N)
)(i)}

generated by the vector-block BCD method is a stationary point of Eq. (45).

Using Theorem 2, the solution of Eq. (52) is

h
(n)
k ←

[

R<n>
k b

(n)
k

]

+
∥

∥

∥b
(n)
k

∥

∥

∥

2

2

. (54)

Eq. (54) can be evaluated without explicitly constructing R<n>
k . Observe that

(

b
(n)
k

)T

b
(n)
k =

N
∏

ñ=1,ñ6=n

(

h
(ñ)
k

)T

h
(ñ)
k , (55)
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which is a simple case of Eq. (50), and

R<n>
k b

(n)
k =



A−
K
∑

k̃=1,k̃ 6=k

h
(1)

k̃
◦ · · · ◦ h(N)

k̃





<n>

b
(n)
k (56)

= A<n>b
(n)
k −

K
∑

k̃=1,k̃ 6=k





N
∏

ñ=1,ñ6=n

(

h
(ñ)

k̃

)T

h
(ñ)
k



h
(n)

k̃
. (57)

Eq. (54) can then be simplified as

h
(n)
k ←





h
(n)
k +

A<n>b
(n)
k −H(n)

(

⊗N

ñ=1,ñ6=n

(

H(ñ)
)T

H(ñ)
)

·k

∏N

ñ=1,ñ6=n

(

h
(ñ)
k

)T

h
(ñ)
k






, (58)

where A<n>b
(n)
k can be computed using Eq. (49). Observe the similarity be-

tween Eq. (58) and Eqs. (14).

6 Implementation Issues and Comparisons

6.1 Stopping Criterion

Iterative methods have to be equipped with a criterion for stopping iterations.
In NMF or NTF, an ideal criterion would be to stop iterations after a local
minimum of Eq. (2) or Eq. (45) is attained. In practice, a few alternatives have
been used as summarized below.

Let us first discuss stopping criteria for NMF. A naive approach is to stop
when the decrease of the objective function value becomes smaller than some
predefined threshold:

f(W(i−1),H(i−1))− f(W(i),H(i)) ≤ ǫ, (59)

where ǫ is a tolerance value to choose. Although this method is commonly
adopted, it is potentially misleading because the difference of the objective
function values may become small before a local minimum is achieved. A
more principled criterion was proposed by Lin [65] as follows. According to
the Karush-Kuhn-Tucher (KKT) conditions, (W,H) where W ∈ R

M×K and
H ∈ R

N×K is a stationary point of Eq. (2) if and only if [15]

W ≥ 0, H ≥ 0, (60a)

∇fW =
∂f(W,H)

∂W
≥ 0, ∇fH =

∂f(W,H)

∂H
≥ 0, (60b)

W
⊗∇fW = 0, H

⊗∇fH = 0, (60c)
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where

∇fW = 2WHTH− 2AH and

∇fH = 2HWTW − 2ATW.

Defining the projected gradient ∇pfW ∈ R
M×K as, for m = 1, · · · ,M and

k = 1, · · · ,K,

(∇pfW)mk ≡
{

(∇fW)mk if (∇fW)mk < 0 or Wmk > 0,

0 otherwise,

and ∇pfH similarly, the conditions in Eqs. (60) can be rephrased as

∇pfW = 0 and ∇pfH = 0.

Denote the projected gradient matrices at the ith iteration by ∇pf
(i)
W and

∇pf
(i)
H , and define

∆(i) =

√

∥

∥

∥∇pf
(i)
W

∥

∥

∥

2

F
+
∥

∥

∥∇pf
(i)
H

∥

∥

∥

2

F
. (61)

Using this definition, the stopping criterion is

∆(i)

∆(0)
≤ ǫ, (62)

where ∆(0) is from the initial values of (W,H). Unlike Eq. (59), Eq. (62)
guarantees the stationarity of the final solution. Some variants of this criterion
was used in [38,50].

An analogous stopping criterion can be derived for the NCP formulation
in Eq. (45). The gradient matrix ∇fH(n) can be derived from the least squares
representation in Eq. (48):

∇fH(n) = 2H(n)
(

B(n)
)T

B(n) − 2A<n>B(n).

See Eqs. (49) and (50) for efficient computation of
(

B(n)
)T

B(n) andA<n>B(n).
With function ∆ defined as

∆(i) =

√

√

√

√

N
∑

n=1

∥

∥

∥∇pf
(i)

H(n)

∥

∥

∥

2

F
, (63)

Eq. (62) can be used to stop iterations of an NCP algorithm.
It has to be noted that using Eq. (59) or Eq. (62) for the purpose of compar-

ing algorithms might be unreliable. One might want to measure the amounts of
time until several algorithms satisfy these criteria and compare them [65,50].
Such comparison would usually reveal meaningful trends, but there are some
caveats. The difficulty of using Eq. (59) is straightforward because, in some
algorithm such as the multiplicative updating rule, the difference in Eq. (59)
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can become quite small before arriving at a minimum. The difficulty of using
Eq. (62) is as follows. Note that the diagonal rescaling of W and H does not
affect the quality of approximation: For a diagonal matrix D ∈ R

K×K
+ with

positive diagonal elements, WHT = WD−1 (HD)
T
. However, the norm of

the projected gradients in Eq. (61) is affected by a diagonal scaling: It is easy
to check that

(

∂f

∂(WD−1)
,

∂f

∂(HD)

)

=

((

∂f

∂W

)

D,

(

∂f

∂H

)

D−1

)

.

Hence, two solutions that are only different up to a diagonal scaling have the
same objective function value, but they can be measured differently in terms
of the norm of the projected gradients. See Kim and Park [54] for more infor-
mation. Ho [42] considered including a normalization step before computing
Eq. (61) to avoid this issue.

6.2 Results of Experimental Comparisons

A number of papers have reported results of experimental comparisons of sev-
eral NMF algorithms. A few papers have shown the slow convergence of Lee
and Seung’s multiplicative updating rule and demonstrated the superiority
of other algorithms published subsequently [38,65,50]. Comprehensive com-
parisons of several efficient algorithms for NMF were conducted by Kim and
Park [54], who compared MATLAB implementations of the ANLS-based meth-
ods, the HALS/RRI method, the multiplicative updating rule, and a few other
methods. Their results show that the convergence of the ANLS-based methods
and the HALS/RRI method, which are based on the BCD framework, is faster
than that of other methods tested. The slow convergence of the multiplicative
updating was confirmed, and the ALS method in Section 3.3 was shown to
fail to converge in many cases. Observations regarding the fast convergence
of the ANLS method with the block principal pivoting method for the NLS
subproblems (ANLS/BPP) are interesting. Since NMF is commonly used as a
dimension reduction method, there are special structures in the NLS subprob-
lems: H and W in Eqs. (7) are typically long and thin, and WT and HT there
are typically flat and wide. The speed-up techniques used in the ANLS/BPP
method wisely utilizes these structures by identifying common computations in
Cholesky factorization. Among all the methods tested, the HALS/RRI method
showed the fastest overall convergence although the ANLS/BPP method ap-
peared comparably fast and outperformed the HALS/RRI method in some
cases. See [54] for more details.

Further comparisons are presented in Gillis and Glineur [35] and Hsieh
and Dhillon [45] where the authors proposed acceleration methods for the
HALS/RRI method. Their comparisons show that the HALS/RRI method
or the accelerated versions converge the fastest among all methods tested.
Korattikara et al. [57] demonstrated an effective approach to accelerate the
ANLS/BPPmethod. Overall, the HALS/RRI method, the ANLS/BPPmethod,
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and their accelerated versions show the state-of-the-art performance in the ex-
perimental comparisons.

Comparison results of algorithms for NCP are provided in [55]. Interest-
ingly, the ANLS/BPP method showed faster convergence than the HALS/RRI
method in the tensor factorization case. Further investigations and experi-
mental evaluations of the NCP algorithms are needed to fully explain these
observations.

7 Efficient NMF Updating: Algorithms

In practice, we often need to update a factorization with a slightly modified
condition or some additional data. We consider two scenarios where an exist-
ing factorization needs to be efficiently updated to a new factorization. Impor-
tantly, the unified view of the NMF algorithms presented in earlier chapters
provides useful insights when we choose algorithmic components for updating.
Although we focus on the updating of NMF here, similar updating schemes
can be developed for NTF as well.

7.1 Updating NMF with an Increased or Decreased K

NMF algorithms discussed in Sections 2 and 3 assume that K, the reduced
dimension, is provided as an input. In practical applications, however, prior
knowledge on K might not be available, and a proper value for K has to be
determined from data. To determine K from data, typically NMFs are com-
puted for several different K values and then the best K is chosen according
to some criterion [10,31,46]. In other cases, one might not be satisfied with
NMF with a specific K value and want to quickly obtain NMF with increased
or decreased K values. In these cases, computing several NMFs each time
from scratch would be very expensive, and therefore it is desired to develop an
algorithm to efficiently update an already computed factorization when K is
changed only a little. We propose an algorithm for this task in this subsection.

Suppose we have computed Wold ∈ R
M×K1
+ and Hold ∈ R

N×K1
+ as a

solution of Eq. (2) with K = K1. For K = K2 which is close to K1, we are to
compute new factors Wnew ∈ R

M×K2
+ and Hnew ∈ R

N×K2
+ as a minimizer of

Eq. (2). Let us first consider the K2 > K1 case, which is shown in Fig. 2. Each
ofWnew andHnew in this case containsK2−K1 additional columns compared
to Wold and Hold. A natural strategy is to initialize new factor matrices by
recycling Wold and Hold as

Wnew = [Wold Wadd ] and Hnew = [Hold Hadd ], (64)

where Wadd ∈ R
M×(K2−K1)
+ and Hadd ∈ R

N×(K2−K1)
+ are generated with, e.g.,

random nonnegative entries. Using Eq. (64) as initial values, we can execute an
NMF algorithm to find the solution of Eq. (2). Since Wold and Hold already
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Fig. 2 Updating NMF with an increased K

Algorithm 2 Updating NMF with Increased or Decreased K Values

Input: A ∈ R
M×N
+ ,

(

Wold ∈ R
M×K1
+ ,Hold ∈ R

N×K1
+

)

as a minimizer of Eq. (2), and K2.

Output:
(

Wnew ∈ R
M×K2
+ ,Hnew ∈ R

N×K2
+

)

as a minimizer of Eq. (2).

1: if K2 > K1 then

2: Approximately solve Eq. (65) with the HALS/RRI method to find (Wadd,Hadd).
3: Let Wnew ← [Wold Wadd ] and

Hnew ← [Hold Hadd ].
4: end if

5: if K2 < K1 then

6: For k = 1, . . . ,K1, let
δk = ‖ (Wold)·k ‖

2
2‖ (Hold)·k ‖

2
2.

7: Let J be the indices corresponding to the K2 largest values of δ1, · · · , δK1
.

8: Let Wnew and Hnew be the submatrices of Wold and Hold obtained from the
columns indexed by J .

9: end if

10: Using Wnew and Hnew as initial values, execute an NMF algorithm to compute NMF
of A.

approximatesA, this warm-start strategy is expected to be more efficient than
computing everything from scratch.

We further improve this strategy based on the following observation. In-
stead of initializing Wadd and Hadd with random entries, we can compute
Wadd and Hadd that approximately factorize the residual matrix, i.e., A −
WoldH

T
old. This can be done by solving the following problem:

(Wadd,Hadd)← (65)

argmin
W ∈ R

M×(K2−K1)

H ∈ R
N×(K2−K1)

∥

∥(A−WoldH
T
old)−WHT

∥

∥

2

F

subject toW ≥ 0,H ≥ 0.

Eq. (65) need not be solved very accurately. Once an approximate solution of
Eq. (65) is obtained, it is used to initialize Wnew and Hnew in Eq. (64) and
then an NMF algorithm is executed for the entire matrices Wnew and Hnew.

When K2 < K1, we need less columns in Wnew and Hnew than in Wold

and Hold. For a good initialization of Wnew and Hnew, we need to choose the
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Fig. 3 Updating NMF with incremental data

Algorithm 3 Updating NMF with Incremental Data

Input: A ∈ R
M×N
+ ,

(

Wold ∈ R
M×K
+ ,Hold ∈ R

N×K
+

)

as a solution of Eq. (2), and ∆A ∈

R
M×∆N
+ .

Output: Wnew ∈ R
M×K
+ and Hnew ∈ R

(N+∆N)×K
+ as a solution of Eq. (2).

1: Solve the following NLS problem:

∆H← argmin
H∈R∆N×K

‖WoldH
T −∆A‖2F s.t. H ≥ 0.

2: Let Wnew ←Wold and Hnew ←

[

Hold

∆H

]

.

3: Using Wnew and Hnew as initial values, execute an NMF algorithm to compute NMF
of [A ∆A ].

columns from Wold and Hold. Observing that

A ≈WoldH
T
old =

K1
∑

k=1

(Wold)·k (Hold)
T

·k , (66)

the K2 columns can be selected as follows. Let δk be the squared Frobenius
norm of the kth rank-one matrix in Eq. (66), given as

δk = ‖ (Wold)·k (Hold)
T

·k ‖2F = ‖ (Wold)·k ‖22‖ (Hold)·k ‖22.

We then take the largest K2 values from δ1, · · · , δK1 and use corresponding
columns of Wold and Hold as initializations for Wnew and Hnew.

Summarizing the two cases, an algorithm for updating NMF with an in-
creased or decreased K value is presented in Algorithm 2. Note that the
HALS/RRI method is chosen for Step 2: Since the new entries appear as
column blocks (see Fig. 2), we have found that the HALS/RRI method is an
optimal choice. For Step 10, although any algorithm may be chosen, we have
adopted the HALS/RRI method for our experimental evaluation in Section 8.1.

7.2 Updating NMF with Incremental Data

In applications such as video analysis and mining of text stream, we have
to deal with dynamic data where new data keep coming in and obsolete data
get discarded. Instead of completely recomputing the factorization after only a
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small portion of data are updated, an efficient algorithm needs to be designed
to update NMF. Let us first consider a case that new data are observed.
Suppose we have computed Wold ∈ R

M×K
+ and Hold ∈ R

N×K
+ as a minimizer

of Eq. (2) for A ∈ R
M×N
+ . New data, ∆A ∈ R

M×∆N
+ , are placed in the last

columns of a new matrix as Ã = [A ∆A ]. Our goal is to efficiently compute
the updated NMF

Ã = [A ∆A ] ≈WnewH
T
new,

where Wnew ∈ R
M×K
+ and Hnew ∈ R

(N+∆N)×K
+ .

The following strategy we propose is simple but efficient. Since columns
in Wold form a basis whose nonnegative combinations approximate data in-
stances in A, it is reasonable to use Wold to initialize Wnew. Similarly, Hnew

is initialized as

[

Hold

∆H

]

where the first part, Hold, is obtained from the ex-

isting factorization. A new coefficient submatrix, ∆H ∈ R
∆N×K
+ , is needed

to represent the coefficients for new data. Although it is possible to initialize
∆H with random entries, an improved approach is to solve the following NLS
problem:

∆H← argmin
H∈R∆N×K

‖WoldH
T −∆A‖2F s.t. H ≥ 0. (67)

Using these initializations, we can then execute an NMF algorithm to find
an optimal solution for Wnew and Hnew. Various algorithms for the NLS
problem, discussed in Section 4, maybe used to solve Eq. (67). In order to
achieve optimal efficiency, due to the fact that the number of rows of ∆HT is
usually small, the block principal pivoting algorithm is one of the most efficient
method as demonstrated in [54]. We summarize this method for updating NMF
with incremental data in Algorithm 3.

A case that obsolete data are discarded is easier to handle. If A = [∆A Ã ]

where ∆A ∈ R
M×∆N
+ is to be discarded, we similarly divide Hold as Hold =

[

∆H

H̃old

]

. We then useWold and H̃old to initialize Wnew and Hnew and execute

an NMF algorithm to find a minimizer of Eq. (2).

8 Efficient NMF Updating: Experiments and Applications

We provide the experimental validations of the effectiveness of Algorithm 2
and Algorithm 3 and show their applications. Comparisons on computational
efficiency were performed on dense and sparse synthetic matrices as well as on
real-world data sets. All the experiments were executed with MATLAB on a
Linux machine with 2GHz Intel Quad-core processor and 4GB memory.

8.1 Comparisons of NMF Updating Methods for Varying K

We compared Algorithm 2 with two alternative methods for updating NMF.
The first method is to compute NMF with K = K2 from scratch using the
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(a) Dense, K : 60→ 50
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(b) Sparse, K : 60→ 50
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(c) Dense, K : 60→ 65
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(d) Sparse, K : 60→ 65
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(e) Dense, K : 60→ 80
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(f) Sparse, K : 60→ 80

Fig. 4 Comparisons of updating and recomputing methods for NMF when K changes,
using synthetic matrices. The relative error represents ‖A−WHT ‖F /‖A‖F , and time was
measured in seconds. The dense matrix was of size 600× 600, and the sparse matrix was of
size 3000 × 3000. See text for more details.

HALS/RRI algorithm, which we denote as ‘recompute’ in our figures. The
second method, denoted as ‘warm-restart’ in the figures, computes the new

factorization as follows. If K2 > K1, it generates Wadd ∈ R
M×(K2−K1)
+ and

Hadd ∈ R
N×(K2−K1)
+ using random entries to initialize Wnew and Hnew as in

Eq. (64). If K2 < K1, it randomly selects K2 pairs of columns from Wold and
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(a) AT&T, dense, K : 80→ 100
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(b) PIE, dense, K : 80→ 100
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(c) TDT2, sparse, K : 160→ 200
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(d) 20 Newsgroup, sparse, K : 160→ 200

Fig. 5 Comparisons of updating and recomputing methods for NMF when K changes,
using real-world data sets. The relative error represents ‖A −WHT ‖F /‖A‖F , and time
was measured in seconds. The AT&T and the PIE data sets were dense matrices of size
10, 304× 400 and 4, 096× 11, 554, respectively. The TDT2 and the 20 Newsgroup data sets
were sparse matrices of size 19, 009 × 3, 087 and 7, 845 × 11, 269, respectively.

Hold to initialize the new factors. Using these initializations, ‘warm-restart’
executes the HALS/RRI algorithm to finish the NMF computation.

Synthetic data sets we used and performance comparisons on them are as
follows. We created both dense and sparse matrices. For dense matrices, we
generated W ∈ R

M×K
+ and H ∈ R

N×K
+ with random entries and computed

A = WHT . Then, Gaussian noise was added to the elements of A where the
noise has zero mean and standard deviation is 5% of the average magnitude of
elements in A. All negative elements after adding the noise were set as zero.
We generated a 600× 600 dense matrix with K = 80. For sparse matrices, we
first generated W ∈ R

M×K
+ and H ∈ R

N×K
+ with 90% sparsity and computed

A = WHT . We then used a soft-thresholding operation to obtain a sparse ma-
trix A,1 and the resulting matrix had 88.2% sparsity. We generated a synthetic
sparse matrix of size 3000× 3000.2 In order to observe efficiency in updating,

1 For each element aij , we used aij ← max(aij − 2, 0).
2 We created a larger matrix for the sparse case to clearly illustrate the relative efficiency.
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an NMF with K1 = 60 was first computed and stored. We then computed
NMFs with K2 = 50, 65, and 80. The plots of relative error vs. execution
time for all three methods are shown in Fig. 4. Our proposed method achieved
faster convergence compared to ‘warm-restart’ and ‘recompute’. They some-
times required several times more computation to achieve the same accuracy
with our method. The advantage of the proposed method can be seen in both
dense and synthetic cases.

We have also used four real-world data sets for our comparisons. From the
Topic Detection and Tracking 2 (TDT2)3 text corpus, we selected 40 topics
to create a sparse term-document matrix of size 19, 009× 3, 087. From the 20
Newsgroups data set,4 a sparse term-document matrix of size 7, 845× 11, 269
was obtained after removing keywords and documents with frequency less
than 20. The AT&T facial image database5 produced a dense matrix of size
10, 304× 400. The images in the CMU PIE database6 were resized to 64× 64
pixels, and we formed a dense matrix of size 4, 096× 11, 554.7 We focused on
the case when K increases, and the results are reported in Fig. 5. Similarly to
the results on the synthetic data sets, our proposed method was shown to be
the most efficient among the methods we tested.

8.2 Applications of NMF Updating for Varying K

Algorithm 2 can be used to determine the reduced dimension, K, from data.
Our first example, shown in Fig. 6-(a), is determining a proper K value that
represent the number of clusters. Using NMF as a clustering method, Brunet
et al. [10] proposed to select the number of clusters by computing NMFs with
multiple initializations for various K values and then evaluating the dispersion
coefficients (See [10,49,52] for more details). We took the MNIST digit image
database [59] and used 500 images with 28× 28 pixels from each of the digits
6, 7, 8, and 9. Resulting data matrix was of size 784 × 2000. We computed
NMFs for K = 3, 4, 5, and 6 with 50 different initializations for each K. The
top of Fig. 6-(a) shows that K = 4 can be correctly determined from the point
where the dispersion coefficient starts to drop. The bottom of Fig. 6-(a) shows
the box-plot of the total execution time needed by Algorithm 2, ‘recompute’,
and ‘warm-restart’. We applied the same stopping criterion in Eq. (62) for all
the three methods.

Further applications of Algorithm 2 are shown in Fig. 6-(b) and Fig. 6-(c).
Fig. 6-(b) demonstrates a process for probing the approximation errors of NMF
with various K values. With K = 20, 40, 60 and 80, we generated 600 × 600
synthetic dense matrices as described in Section 8.1. Then, we computed NMFs
with Algorithm 2 for K values ranging from 10 to 160 with a step size 5. The

3 http://projects.ldc.upenn.edu/TDT2/
4 http://people.csail.mit.edu/jrennie/20Newsgroups/
5 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
6 http://www.ri.cmu.edu/projects/project_418.html
7 http://www.zjucadcg.cn/dengcai/Data/FaceData.html
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Fig. 6 (a) Top: Dispersion coefficients (see [10,52]) obtained by using 50 different initializa-
tions for each K, Bottom: Execution time needed by our method, ‘recompute’, and ‘warm-
restart’. (b) Relative errors for various K values on data sets created with K = 20, 40, 60
and 80. (c) Classification errors on training and testing data sets of AT&T facial image
database using 5-fold cross validation.

relative objective function values with respect to K are shown in Fig. 6-(b).
In all the cases K = 20, 40, 60, and 80, we were able to determine the correct
K values by choosing a point where the relative error stopped decreasing
significantly.

Fig. 6-(c) demonstrates a process of choosing K for a classification pur-
pose. Using the 10304 × 400 matrix from the AT&T facial image database,
we computed NMF to generate a K dimensional representation of each im-
age, taken from each row of H. We then trained a nearest neighbor classifier
[76] using the reduced-dimensional representations. To determine the best K
value, we performed the 5-fold cross validation: Each time a data matrix of
size 10304×320 was used to compute W and H, and the reduced-dimensional
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(c) ∆N = 50

Fig. 7 Comparisons of NMF updating methods for incremental data. Given a 1000 × 500
matrix and a corresponding NMF, ∆N additional data items were appended and the NMF
was updated. The relative error represents ‖A −WHT ‖F /‖A‖F , and time was measured
in seconds.

representations for the test data Ã were obtained by solving a NLS problem,

minH̃≥0

∥

∥

∥Ã−WH̃

∥

∥

∥

2

F
. Classification errors on both training and testing sets

were measured and are shown in Fig. 6-(c). Five paths of training and testing
errors are plotted using thin graphs, and the averaged training and testing
errors are plotted using thick graphs. Based on the figure, we chose K = 13
since the testing error barely decreased beyond the point whereas the training
error approached to zero.

8.3 Comparisons of NMF Updating Methods for Incremental Data

We also tested the effectiveness of Algorithm 3. We created a 1000×500 dense
matrix A as described in Section 8.1 with K = 100. An initial NMF was
computed and stored. Then, an additional data set of size 1000×10, 1000×20,
or 1000× 50 was appended, and we computed the updated NMF with several
methods as follows. In addition to Algorithm 3, we considered four alternative
methods. A naive approach that computes the entire NMF from scratch is
denoted as ‘recompute’. An approach that initializes a new coefficient matrix

as Hnew =

[

Hold

∆H

]

where ∆H are generated with random entries is denoted

as ‘warm-restart’. The incremental NMF algorithm (INMF) [11] as well as the
online NMF algorithm (ONMF) [12] were also included in the comparisons.
Fig. 7 shows the execution results, where our proposed method outperforms
all the other methods tested.

9 Conclusion and Discussion

We have reviewed algorithmic strategies for computing NMF and NTF from a
unifying perspective based on the block coordinate descent (BCD) framework.
The BCD framework for NMF and NTF enables simplified understanding of
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several successful algorithms such as the alternating nonnegative least squares
(ANLS) and the hierarchical alternating least squares (HALS) methods. Based
on the BCD framework, the theoretical convergence properties of the ANLS
and the HALS methods are readily explained. We have also summarized how
previous algorithms that do not fit in the BCD framework differ from the BCD-
based methods. With insights from the unified view, we proposed efficient
algorithms for updating NMF both for the cases that the reduced dimension
varies and that data are incrementally added or discarded.

There are many other interesting aspects of NMF that are not covered
in our paper. Depending on the probabilistic model of the underlying data,
NMF can be formulated with various divergences. Formulations and algorithms
based on Kullback–Leibler divergence [61,73], Bregman divergence [22,62],
Itakura-Saito divergence [27], and Alpha and Beta divergences [20,19] have
been developed. For discussion on nonnegative rank as well as the geomet-
ric interpretation of NMF, see Lin and Chu [66], Gillis [32], and Donoho and
Stodden [25]. NMF have been also studied from the Bayesian statistics point
of view: See Schmidt et al. [72] and Zhong and Girolami [81] for more infor-
mation. In the data mining community, variants of NMF such as convex and
semi-NMFs [69,23] and orthogonal tri-NMF [24] have been proposed. For an
overview on the use of NMF in bioinformatics, see Devarajan [21] and refer-
ences therein. Cichocki et al.’s book [20] explains the use of NMF for signal
processing. See Chu and Plemmons [15], Berry et. al [4], and Cichocki et al. [20]
for earlier surveys on NMF.
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