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ABSTRACT
Nonnegative matrix factorization (NMF) has been success-
fully used as a clustering method especially for flat parti-
tioning of documents. In this paper, we propose an efficient
hierarchical document clustering method based on a new al-
gorithm for rank-2 NMF. When the two block coordinate
descent framework is applied to rank-2 NMF, each subprob-
lem requires a solution for nonnegative least squares (NNLS)
with only two columns. We design the algorithm for rank-
2 NMF by exploiting the fact that an exhaustive search for
the optimal active set can be performed extremely fast when
solving these NNLS problems. In addition, we design a mea-
sure on the results of rank-2 NMF for determining which leaf
node should be further split. On a number of text data sets,
our proposed method produces high-quality tree structures
in significantly less time compared to other methods such as
hierarchical K-means, standard NMF, and latent Dirichlet
allocation.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Clustering

General Terms
Algorithms, Experimentation, Performance

Keywords
Active-set algorithm, hierarchical document clustering, non-
negative matrix factorization, rank-2 NMF

1. INTRODUCTION
Nonnegative matrix factorization (NMF) has received wide

recognition in many data mining areas such as text analysis
[24]. In NMF, given a nonnegative matrix X ∈ Rm×n

+ and
k ≤ min(m,n), X is approximated by a product of two non-
negative matrices W ∈ Rm×k

+ and H ∈ Rk×n
+ . A common
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way to define NMF is to use the Frobenius norm to measure
the difference between X and WH [10]:

min
W,H≥0

‖X −WH‖2F (1)

where ‖ · ‖F denotes the Frobenius norm. The columns of
X = [x1, · · · ,xn] represent n nonnegative data points in
the m-dimensional space. Typically k << min(m,n), i.e.
the original data points in the m-dimensional space are ap-
proximated in a much lower-dimensional space of dimension
k. The k columns of W are nonnegative basis vectors that
span the lower-dimensional space, and the i-th column of H
contains k nonnegative linear coefficients that represent xi

in the space spanned by the columns of W . Nonnegative
data frequently occur in modern data analysis, such as text
corpus when represented as a term-document matrix [18].
Because the lower rank factors W and H contain only non-
negative elements which stay in the original domain of the
data points, NMF often produces basis vectors that facilitate
better interpretation [14].

NMF has shown excellent performances as a clustering
method in numerous applications [24, 5, 9]. When NMF
is used as a clustering method, the columns of W are in-
terpreted as k cluster representatives, and the i-th column
of H contains fractional assignment values of the i-th data
point for the k clusters, which can be interpreted as soft
clustering. To obtain a hard clustering result for the i-th
data point, we may choose the index that corresponds to
the largest element in the i-th column of H. This clustering
scheme has been shown to achieve superior clustering qual-
ity, and many variations such as constrained clustering and
graph clustering [12, 9, 5, 16] have been proposed. The stan-
dard NMF (1) has been shown to perform especially well as
a document clustering method, where the columns of W can
be interpreted as k topics extracted from a corpus [24, 12].
When the j-th column of W is constrained to have unit L1

norm, it can be interpreted as a probability distribution of
terms for the j-th topic.

Most of the previous work on clustering with NMF has
been focused on flat partitioning of a data set. However,
hierarchical clustering often reveals additional structures in
the data. For example, a tree structure often provides a
more detailed taxonomy or a better description of natu-
ral phenomena than a flat partitioning. In the widely-used
text corpus RCV1 [15], a hierarchy of topics was defined,
with 103 leaf nodes under four super categories (Corpo-
rate/Industrial, Economics, Government/Social, Markets).
Online retailers such as Amazon and eBay also maintain
their product catalogues as a hierarchical tree structure. In



this paper, we will explore hierarchical clustering with NMF
and show its competitive clustering quality.

The lower rank k in standard NMF, which represents the
number of clusters in a clustering setting, is often assumed
to be given or predetermined according to prior knowledge
about the data set or the embedding of the data points.
Selecting the number of clusters k is an important and dif-
ficult issue in practice. Though model selection methods
for selecting k have been proposed in the context of NMF
[4], it is expensive to compute solutions of NMF for each
k in general. In the NMF-based hierarchical approach we
propose in this paper, a data set is recursively divided into
small subsets and the number of clusters does not need to
be predetermined by a user.

Hierarchical probabilistic topic modeling of document data
sets, such as hierarchical latent Dirichlet allocation (hLDA)
[2], is very popular in the community. We will show the con-
ceptual difference between a clustering approach and prob-
abilisitic modeling in a later section.

We will design a hierarchical clustering method based on
rank-2 NMF, i.e. NMF with k = 2. The hierarchical struc-
ture we will generate is a binary tree, and our method does
not require any input on the level of the tree or the total
number of clusters. Our motivation for hierarchical cluster-
ing with binary tree structure is based on our fast algorithm
for rank-2 NMF proposed in this paper. We will exploit the
special properties of NMF with k = 2, and propose a very
fast algorithm. We will study a particular type of existing
algorithms for standard NMF, namely active-set-type algo-
rithms [10, 11], and show that when k = 2, active-set-type
algorithms can be reduced to a simple and efficient algorithm
for rank-2 NMF, which has additional benefits when imple-
mented on parallel platforms due to “non-random” memory
access.

When applying rank-2 NMF to the recursive splitting of
a text corpus, we need to automatically determine the next
node to split. Our strategy is to collect rank-2 NMF results
on all the current leaf nodes before deciding which one to
split, and compute a score for each leaf node to evaluate
whether it is composed of two well-separated clusters based
on the two basis vectors generated by rank-2 NMF. Com-
pared to existing strategies that rely on an n×n document-
document similarity matrix [6], our methodology never gen-
erates a large dense matrix thus is more time/space efficient.
Although the rank-2 NMF computation on any leaf node in
the final tree is wasted, our methodology is still very effi-
cient overall due to the high efficiency of our rank-2 NMF
algorithm.

Our contributions in this paper include:

• We propose an active-set-type algorithm for rank-2
NMF, which is fast, guaranteed to converge, and easy
to parallelize.

• By combining rank-2 NMF with a designed scoring
function for every leaf node, we develop an efficient
workflow for hierarchical document clustering with out-
lier detection. Our methodology is able to determine
both the tree structure and the depth of the tree on-
the-fly, in contrast to hierarchical probabilistic mod-
eling methods that require the depth of the tree be
specified by the user.

• We present promising empirical results of our method-
ology in terms of efficiency, clustering quality, as well

as semantic quality in the topic modeling context. To
the best of our knowledge, our work is the first attempt
to cluster the full RCV1 data set [15] which contains
approximately 800,000 documents. Our method fin-
ished in about 7 minutes on a shared-memory machine
with two quad core CPUs and achieved better quality
than standard NMF which costs 6.5 hours.

The rest of the paper is organized as follows. We conduct
detailed analysis of existing active-set-type algorithms for
NMF in the special case of k = 2 in Section 2, and present
our new algorithm for rank-2 NMF in Section 3. In Section
4, we describe our measure for scoring tree nodes and the
hierarchical document clustering workflow. In Section 5, we
show the difference between clustering approaches and topic
modeling approaches when applied to flat and hierarchi-
cal document clustering. In Section 6, we demonstrate the
promising efficiency, clustering quality, and semantic quality
of our methodology empirically on large-scale data sets. In
Section 7, we summarize the advantages and shortcomings
of this work. Although we focus on document clustering,
the proposed hierarchical clustering method is not limited
to documents.

Throughout this paper, ‖ · ‖ denotes the Euclidean norm,
and ‖ · ‖F denotes the Frobenius norm.

2. ALTERNATING NONNEGATIVE LEAST
SQUARES FOR NMF

In this paper, we consider the algorithms for NMF that fit
into the two-block coordinate descent framework [17, 10, 11]
due to better theoretical guarantee in convergence proper-
ties. In this framework, starting from some initialization, the
matrices W and H are updated in an iterative manner, until
some stopping criterion is satisfied. The overall nonconvex
problem (1) is thus reduced to two convex subproblems:

min
W≥0

‖HTWT −XT ‖2F (2)

min
H≥0

‖WH −X‖2F (3)

When an optimal solution is obtained for each subproblem
in each iteration, this iterative procedure is guaranteed to
converge to a stationary point [7], which is an excellent
convergence property for nonconvex problems such as (1).
Each subproblem is a nonnegative least squares problem
(NNLS) with multiple right-hand sides. Consider the fol-
lowing generic form for simplicity:

min
G≥0
‖BG− Y ‖2F (4)

where B ∈ Rm×k
+ , Y ∈ Rm×n

+ are given, and G ∈ Rk×n
+ is to

be solved.
Various types of algorithms can be used to solve the NNLS

problem and can be categorized into standard optimiza-
tion algorithms and active-set-type algorithms. A classi-
cal active-set algorithm for NNLS with a single right-hand
side was introduced in [13]. In the context of NMF, Lin [17]
claimed that it would be expensive to solve NNLS with mul-
tiple right-hand sides using the active-set algorithm repeat-
edly, and proposed a projected gradient descent (PGD) algo-
rithm. However, Kim & Park [10] proposed several improve-
ments for the original active-set algorithm, and achieved an
NMF algorithm with overall efficiency comparable to PGD.



Later, a block-pivoting algorithm for NNLS [11] was pro-
posed, which proved to be more efficient than the active-set
algorithm when k is large. We call both active-set based and
block-pivoting based algorithms for NMF as active-set-type
algorithms.

In active-set-type algorithms for NNLS, we need to iden-
tify a partitioning of variables in G into an active set A
and a passive set P. At each step of searching for the op-
timal active set, we need to solve an unconstrained least
squares problem. Because the number of possible active sets
is exponential, a well-guided search of the optimal active
sets is important, such as presented by the active-set and
block-pivoting methods. To improve the efficiency of solv-
ing NNLS with multiple right-hand sides (4), the columns
of G with the same active set pattern are grouped together
for lower computational complexity and more cache-efficient
computation [10, 22], and the grouping of columns changes
when the active set is re-identified in each iteration of NNLS.
Practically, the grouping step is implemented as a sorting of
the columns of G, with complexity O(n logn) which is ex-
pensive when n is large. Other steps, such as checking the
optimality of the active sets, also introduces additional over-
heads.

When the underlying application restricts the value of k
to be 2, such as hierarchical clustering that generates a bi-
nary tree, the number of possible active sets is reduced to
22 = 4 for each column of G, and it is practical to enumerate
all of them. Conceptually, active-set-type algorithms search
for the optimal active set in a finite set of possible active
sets, and the size of the finite search space is 4 in the special
case of k = 2. On the contrary, standard optimization al-
gorithms require an indefinite number of search steps before
convergence, and the actual number of iterations depends
on the required accuracy. Therefore, when k = 2, stan-
dard optimization algorithms such as PGD are not able to
exploit the special property of NNLS, and active-set-type
algorithms become the better choice. In the next section,
we will propose a new algorithm and its efficient implemen-
tation based on active-set-type algorithms, which will avoid
all the overheads of switching between active sets.

Both flat clustering based on standard NMF and hierar-
chical clustering based on rank-2 NMF can produce k non-
overlapping groups of a data set. In the following, we ar-
gue that the hierarchical approach is the preferred choice in
terms of efficiency by conducting an analysis of computa-
tional complexity under different k values, using the active-
set based algorithm [10] as an exemplar algorithm. Given
an m × n data matrix and the number of clusters k, the
complexity of one NNLS run for standard NMF is:

4mnk + 2(m+ n)k2 + t[(1/3)k3 + 2(m+ n)k2] flops (5)

where t is the number of search steps towards the optimal
active set. In hierarchical clustering, we need to perform
rank-2 NMF for k − 1 times, and the complexity of one
NNLS run summed over all the k − 1 steps is at most:

(k − 1) · [8mn+ 8(m+ n) + t(8/3 + 8m+ 8n)] flops (6)

The actual flops (floating point operations) in hierarchical
clustering must be smaller than (6), because any splitting
other than the first step is executed on a subset of the data
set only. Thus, the expression (5) is superlinear with re-
spect to k, while (6) is linear with respect to k. Assuming
the number of search steps t is the same in both cases, the

hierarchical approach is expected to be much less expensive.
With our new algorithm specifically for rank-2 NMF in this
paper, the efficiency of NMF-based hierarchical clustering
will be boosted even more.

3. A FAST ALGORITHM FOR minG≥0 ‖BG −
Y ‖2F WITH B ∈ RM×2

+ , Y ≥ 0

We have reduced the problem of solving NMF to the
problem of solving NNLS with multiple right-hand sides:
minG≥0 ‖BG− Y ‖2F . In the context of NMF, Y is set to ei-
ther the data matrix X, or XT . Let Y = [y1, · · · ,yn], G =
[g1, · · · ,gn]. We emphasize that yi ≥ 0 (1 ≤ i ≤ n) in the
NNLS problem we are solving, since the data is nonnegative.

Since the formulation (4) for NNLS with multiple right-
hand sides can be rewritten as

min
g1,··· ,gn≥0

‖Bg1 − y1‖2 + · · ·+ ‖Bgn − yn‖2 (7)

the solution of each column of G is independent of each
other, and we obtain n NNLS problems each with a single
right-hand side. We first study the solution of NNLS with
a single right-hand side, and then consider the issues when
combining multiple right-hand sides.

3.1 Solution of ming≥0 ‖Bg − y‖
In general, when B has more than two columns, an active-

set-type algorithm has to search for an optimal active set
as discussed in Section 2. We denote the two parts of g
that correspond to the active set and the passive set as gA
and gP , respectively. At each iteration of the algorithm,
gA is set to zero, and gP is solved by unconstrained least
squares using a subset of columns of B corresponding to
P. The optimal active set is the one where the solution
of unconstrained least squares is feasible, i.e. gP ≥ 0, and
meanwhile ‖Bg − y‖2 is minimized.

When k = 2, we have

J(g) ≡ ‖Bg − y‖2 = ‖b1g1 + b2g2 − y‖2 (8)

where B = [b1,b2] ∈ Rm×2
+ , y ∈ Rm×1

+ , and g = [g1, g2]T ∈
R2×1.

Considering the limited number of possible active sets, our
idea is to avoid the search of the optimal active set at the
cost of some redundant computation. The four possibilities
of the active setA is shown in Table 1. We simply enumerate

Table 1: Four possible active sets when B ∈ Rm×2
+ .

A P J(g)

{1, 2} ∅ ‖y‖2
{1} {2} ‖b2g2 − y‖2
{2} {1} ‖b1g1 − y‖2
∅ {1, 2} ‖b1g1 + b2g2 − y‖2

all the possibilities of (A,P), and for each P, minimize the
corresponding objective function J(g) in Table 1 by solving
unconstrained least squares. Then, of all the feasible solu-
tions of g (i.e. g ≥ 0), we pick the one with the smallest
J(g). Now we study the properties of the solutions of these
unconstrained least squares problems, which will lead to an
efficient algorithm to find the optimal active set.

First, we claim that the two unconstrained problems min
‖b1g1−y‖2, min ‖b2g2−y‖2 always yield feasible solutions.



Figure 1: An illustration of one-dimensional least
squares problems min ‖b1g

∗
1 −y‖2 and min ‖b2g

∗
2 −y‖2.

y

b1b1g∗1

b2

b2g∗2

Algorithm 1 Algorithm for solving ming≥0 ‖Bg − y‖2,
where B = [b1,b2] ∈ Rm×2

+ ,y ∈ Rm×1
+

1: Solve unconstrained least squares g∅ ← min ‖Bg − y‖2

2: if g∅ ≥ 0 then
3: return g∅

4: else
5: g∗1 ← (yT b1)/(bT

1 b1)
6: g∗2 ← (yT b2)/(bT

2 b2)
7: if g∗1‖b1‖ ≥ g∗2‖b2‖ then
8: return [g∗1 , 0]T

9: else
10: return [0, g∗2 ]T

11: end if
12: end if

Take min ‖b1g1 − y‖2 as an example. Its solution is:

g∗1 =
yT b1

bT
1 b1

(9)

If b1 6= 0, we always have g∗1 ≥ 0 since y ≥ 0,b1 ≥ 0. In the
context of rank-2 NMF, the columns of W and the rows of H
are usually linearly independent when nonnegative-rank(X)
≥ 2, thus b1 6= 0 holds in most cases. Geometrically (see
Fig. 1), the best approximation of vector y in the one-
dimensional space spanned by b1 is the orthogonal projec-
tion of y onto b1.

If g∅ ≡ arg min ‖b1g1 + b2g2 − y‖2 is nonnegative, then
A = ∅ is the optimal active set because the unconstrained
solution g∅ is feasible and neither min ‖b1g1 − y1‖2 nor

min ‖b2g2 − y2‖2 can be smaller than J(g∅). Otherwise,
we only need to find the smallest objective J(g) among the
other three cases since they all yield feasible solutions. We
claim that A = {1, 2}, i.e. P = ∅, can be excluded. Using
g∗1 , the solution of min ‖b1g1 − y‖2, we have

‖b1g
∗
1 − y‖2 = ‖y‖2 − (yT b1)2/(bT

1 b1) ≤ ‖y‖2 (10)

In fact, P = {1} includes P = ∅ as a special case when
b1 ⊥ y.

To compare ‖b1g
∗
1−y‖2 and ‖b2g

∗
2−y‖2, we note that in

the illustration in Fig. 1, b1g
∗
1 − y ⊥ b1g

∗
1 and b2g

∗
2 − y ⊥

b2g
∗
2 , therefore we have:

‖bjg
∗
j ‖2 + ‖bjg

∗
j − y‖2 = ‖y‖2 (11)

for j = 1, 2. Thus choosing the smaller objective amounts
to choosing the larger value from g∗1‖b1‖ and g∗2‖b2‖.

Our algorithm for NNLS with a single right-hand side is
summarized in Algorithm 1.

3.2 Solution of minG≥0 ‖BG− Y ‖F
When Algorithm 1 is applied to NNLS with multiple right-

hand sides, computing g∅, g∗1 , g
∗
2 for different vectors y sepa-

Algorithm 2 Algorithm for solving minG≥0 ‖BG − Y ‖2F ,
where B = [b1,b2] ∈ Rm×2

+ , Y ∈ Rm×n
+

1: Solve unconstrained least squares G∅ = [g∅1 , · · · ,g∅n] ←
min ‖BG− Y ‖2

2: β1 ← ‖b1‖, β2 ← ‖b2‖
3: u← (Y T b1)/β2

1

4: v← (Y T b2)/β2
2

5: for i = 1 to n do
6: if g∅i ≥ 0 then
7: return g∅i
8: else
9: if uiβ1 ≥ viβ2 then

10: return [ui, 0]T

11: else
12: return [0, vi]

T

13: end if
14: end if
15: end for

rately is not cache-efficient. In Algorithm 2, we solve NNLS
with n different vectors y simultaneously, and the analy-
sis in Section 3.1 becomes important. Note that the entire
for-loop (line 5-15, Algorithm 2) is embarrassingly parallel
and can be vectorized. To achieve this, unconstrained so-
lutions for all the three possible active sets are computed
before entering the for-loop. Some computation is redun-
dant, for example, the cost of solving ui and vi is wasted
when g∅i ≥ 0 (c.f. line 5-6, Algorithm 1). However, Algo-
rithm 2 represents a non-random pattern of memory access,
and we expect that it is much faster for rank-2 NMF than
applying existing active-set-type algorithms directly.

Note that a näıve implementation of comparing ‖b1g
∗
1 −

y‖2 and ‖b2g
∗
2−y‖2 for n different vectors y requires O(mn)

complexity due to the creation of the m × n dense matrix
BG− Y . In contrast, our algorithm only requires O(m+n)
complexity at this step (line 9, Algorithm 2), because b1,b2

are the same across all the n right-hand sides. The overall
complexity of Algorithm 2 is still O(mn), though, which is
the same as the complexity of existing active-set-type algo-
rithms when k = 2 (see Eq. 5). The dominant part comes
from computing the matrix product Y TB in unconstrained
least squares.

4. HIERARCHICAL DOCUMENT
CLUSTERING BASED ON RANK-2 NMF

Rank-2 NMF can be recursively applied to a data set, gen-
erating a hierarchical tree structure of items. In this section,
we focus on text corpus and develop an overall efficient ap-
proach to hierarchical document clustering with outlier de-
tection. In particular, we need to have a strategy of choosing
an existing leaf node at each splitting step. Extensive crite-
ria for selecting the next leaf node to split were discussed in
previous literature for general clustering methods [6], mainly
relying on cluster labels induced by the current tree struc-
ture. In the context of NMF, however, we have additional
information about the clusters: Each column of W is a clus-
ter representative. In text data, a column of W is the term
distribution for a topic [24], and the largest elements in the
column correspond to the top words for this topic. We will
exploit this information to determine the next node to split.

In summary, our strategy is to compute a score for each



Figure 2: An illustration of a leaf node N and its
two potential children L and R.

Leaf node N
f1 =‘shares’ f2 =‘stock’ f3 =‘company’ f4 =‘common’

Potential child R
fr1 =‘shares’ fr2 =‘stock’

fr3 =‘common’ fr4 =‘stake’

Potential child L
fl1 =‘acquisition’ fl2 =‘unit’

fl3 =‘terms’ fl4 =‘undisclosed’

leaf node, by running rank-2 NMF on this node and evalu-
ating the two columns of W . Then we select the current leaf
node with the highest score as the next node to split. The
score for each node needs only to be computed once when
the node first appears in the tree. For an illustration of a
leaf node and its two potential children, see Fig. 2. A leaf
node N should be split if at least two well-separated topics
can be discovered within the node. Thus we expect that N
receives a high score if the top words for N is a good com-
bination of the top words for its two potential children, L
and R. We also expect that N receives a low score if the
top words for L and R are almost the same.

To be precise, we borrow the concept of normalized dis-
counted cumulative gain (NDCG) [8] from the information
retrieval community. Given a perfect ranked list, NDCG
measures the quality of an actual ranked list which always
has value between 0 and 1. A leaf node N in our tree is
associated with a term distribution wN , given by a column
of W from the rank-2 NMF run that generates the node
N . We can obtain a ranked list of terms for N , by sort-
ing the elements in wN in descending order, denoted by fN .
Similarly, we can obtain ranked lists of terms for its two po-
tential children, L and R, denoted by fL and fR. Assuming
fN is a perfect ranked list, we compute a modified NDCG
(mNDCG) score for each of fL and fR. We describe our
way to compute mNDCG in the following. Recall that m is
the total number of terms in the vocabulary. Suppose the
perfectly ordered terms corresponding to fN is

f1, f2, · · · , fm

and the shuffled orderings in fL and fR are respectively:

fl1 , fl2 , · · · , flm

fr1 , fr2 , · · · , frm

We first define a position discount factor p(fi) and a gain
g(fi) for each term fi:

p(fi) = log (m−max{i1, i2}+ 1) (12)

g(fi) =
log(m− i+ 1)

p(fi)
(13)

where li1 = ri2 = i. In other words, for each term fi, we
find its positions i1, i2 in the two shuffled orderings, and
place a large discount in the gain of term fi if this term is
high-ranked in both shuffled orderings. The sequence of gain
{g(fi)}mi=1 is sorted in descending order, resulting in another
sequence {ĝi}mi=1. Then, for a shuffled ordering fS (fS = fL

or fR), mNDCG is defined as:

mDCG(fS) = g(fs1) +

mX
i=2

g(fsi)

log2(i)
(14)

mIDCG = ĝ1 +

mX
i=2

ĝi

log2(i)
(15)

mNDCG(fS) =
mDCG(fS)

mIDCG
(16)

As we can see, mNDCG is basically computed in the same
way as the standard NDCG measure, but with a modified
gain function. Also note that ĝi instead of g(fi) is used
in computing the ideal mDCG (mIDCG) so that mNDCG
always has a value in the [0, 1] interval.

Finally, the score of the leaf node N is computed as:

score(N ) = mNDCG(fL)×mNDCG(fR) (17)

To illustrate the effectiveness of this scoring function, let us
consider some special cases.

1. When the two potential children L,R describe well-
separated topics, a top word for N is high-ranked in
one of the two shuffled orderings fL, fR, and low-ranked
in the other. Thus the top words will not suffer from a
large discount, and both mNDCG(fL) and mNDCG(fR)
will be large.

2. When both L and R describe the same topic as that of
N , a top word forN is high-ranked in both the shuffled
orderings. Thus the top words will get a large discount,
and both mNDCG(fL) and mNDCG(fR) will be small.

3. When L describes the same topic as that of N , and R
describes a totally unrelated topic (e.g. outliers in N ),
then mNDCG(fL) is large and mNDCG(fR) is small,
and score(N ) is small.

The overall hierarchical document clustering workflow is
summarized in Algorithm 3, where we refer to a node and
the documents associated with the node exchangably. The
while-loop in this workflow (line 8-15) defines an outlier de-
tection procedure, where T trials of rank-2 NMF are allowed
in order to split a leaf nodeM into two well-separated clus-
ters. At each trial, two potential children nodes N1,N2 are
created, and if we believe that one of them (say, N2) is com-
posed of outliers, we discard N2 from M at the next trial.
If we still cannot split M into two well-separated clusters
after T trials,M is marked as a permanent leaf node. Thus
Algorithm 3 has also described when to stop splitting a cer-
tain node. We have not specified the best moment to exit
and stop the recursive splitting process, but simply set an
upper limit of leaf nodes k. Other strategies can be used to
determine when to exit, such as specifying a score thresh-
old σ and exiting the program when none of the leaf nodes
have scores above σ; σ = 0 means that the recursive split-
ting process is not finished until all the leaf nodes become
permanent leaf nodes.

Compared to other criteria for choosing the next node to
split, such as those relying on the self-similarity of each clus-
ter and incurring O(n2) overhead [6], our method is more
efficient. In practice, the binary tree structure that results
from Algorithm 3 often has meaningful hierarchies and leaf
clusters. We will evaluate its performance by standard mea-
sures in the experiment section.



Algorithm 3 Hierarchical document clustering based on
rank-2 NMF

1: Input: A term-document matrix X ∈ Rm×n
+ (often

sparse), maximum number of leaf nodes k, parameter
β > 1 and T ∈ N for outlier detection

2: Create a root node R, containing all the n documents
3: score(R)←∞
4: repeat
5: M← a current leaf node with the highest score
6: Trial index i← 0
7: Outlier set Z ← ∅
8: while i < T do
9: Run rank-2 NMF on M and create two potential

children N1,N2, where |N1| ≥ |N2|
10: if |N1| ≥ β|N2| and score(N2) is smaller than every

positive score of current leaf nodes then
11: Z ← Z ∪N2, M←M− Z, i← i+ 1
12: else
13: break
14: end if
15: end while
16: if i < T then
17: Split M into N1 and N2

18: Compute score(N1) and score(N2)
19: else
20: M←M∪ Z (recycle the outliers and do not split

M)
21: score(M)← −1 (set M as a permanent leaf node)
22: end if
23: until # leaf nodes = k
24: Output: A binary tree structure of documents, where

each node has a ranked list of terms

5. RELATED WORK
NMF can be regarded as both a clustering method and,

under certain constraints, a probabilistic topic modeling
method. Both document clustering and topic modeling can
be thought of as some sort of dimension reduction, because
they find a set of latent topics as term distributions (columns
ofW ) as well as topic proportions for each document (columns
of H). NMF has a long history in document clustering [24],
and its formulation has been used to compute topic models
recently [1]. However, these two tasks have fundamental dif-
ferences. Our paper is focused on the clustering aspect, and
now we compare NMF-based clustering to a popular topic
modeling method, latent Dirichlet allocation (LDA) [3].

We start with comparing flat clustering and flat topic
modeling. First, LDA builds a probabilistic model that gen-
erates the text corpus, and intends to predict the probabil-
ity of new documents. The model should not overfit the
text corpus currently available, and model selection is usu-
ally done via cross-validation. On the contrary, NMF-based
clustering is devoted to the current text corpus only, and its
goal is to derive a partitioning that well-organizes the cor-
pus. Second, LDA models each word as a discrete random
variable, thus is not compatible with tf-idf weighting when
forming the term-document matrix. However, NMF-based
clustering finds an algebraic latent subspace and is able to
leverage the benefit of tf-idf weighting which has proved to
be useful in a wide range of tasks such as information re-
trieval [18]. Finally, the number of topics specified, when
applying LDA, is often set to 100 ∼ 400 [3]; whereas the

number of clusters is often much smaller, and resulting clus-
ters describe much higher-level topics. We generate at most
70 clusters for any corpus in our experiments.

Now we discuss the difference between hierarchical clus-
tering based on rank-2 NMF and hierarchical LDA (hLDA)
[2]. hLDA builds a hierarchy of topics and each document
is generated by sampling from the topics along a path with
length L from the root to a leaf node. On the contrary, hier-
archical clustering builds a hierarchy of documents, and the
documents associated with each node are a mixture of two
topics extracted from this node. In practice, hLDA requires
all the leaf nodes be on the same level of the tree, and the
depth L of the tree is chosen beforehand, while hierarchical
clustering adaptively chooses a node at each splitting step.

In general, both methods have pros and cons: Topic mod-
eling has a probabilistic interpretation, and clustering ap-
proaches are more flexible. In the next section, we include
LDA in our experiments and compare its performance with
the performances of clustering based on NMF and rank-2
NMF. hLDA or other hierarchical probabilistic models are
not considered in the experiments because they represent a
quite different scenario of text modeling, for example, the
number of children of each node cannot be given as input
[2].

As a final note, compared to previous divisive hierarchical
clustering algorithms [6, 25, 21], our methodology splits only
the nodes that consist of well-separated clusters and does not
require additional merging steps. In the experiments, we will
demonstrate the efficiency of our method by applying it to
the full RCV1 data set [15] rather than extracting a small
subset as seen in previous works.

6. EXPERIMENTS
In this section, we describe our experimental settings and

demonstrate both the efficiency and quality of our proposed
algorithm. All the experiments except LDA are run in Mat-
lab 7.9 (R2009b) with two Intel Xeon X5550 quad-core pro-
cessors and 24GB memory.

6.1 Data Sets
Four text data sets with ground-truth classes are used

in our experiments: 1. Reuters-215781 contains news ar-
ticles from the Reuters newswire in 1987. We discarded
documents with multiple class labels, and then selected the
20 largest classes. 2. 20 Newsgroups2 contains articles
from Usenet newsgroups and has a defined hierarchy of 3
levels. Unlike previous indexing, we observed that many ar-
ticles have duplicated paragraphs due to cross-referencing.
We discarded cited paragraphs and signatures. 3. Cora
[19] is a collection of research papers in computer science,
from which we extracted the title, abstract, and reference-
contexts. Although this data set defines a topic hierarchy of
3 levels, we observed that some topics, such as “AI – NLP”
and “IR – Extraction”, are very related but reside in differ-
ent subtrees. Thus we ignored the hierarchy and obtained
70 ground-truth classes as a flat partitioning. 4. RCV1 [15]
is a much larger collection of news articles from Reuters. It
contains over 800,000 articles in the time period of 1996-
1997 and defines a sophisticated topic hierarchy with 103

1http://www.daviddlewis.com/resources/
testcollections/reuters21578/
2http://qwone.com/~jason/20Newsgroups/



labels. We discarded documents with multiple class labels,
and then selected the 40 largest classes, named as RCV1-
labeled. The full data set, named as RCV1-full, is also
included in our experiments with no ground-truth classes.

We summarize these data sets in Table 2. All the data
sets except 20 Newsgroups have very unbalanced sizes of
ground-truth classes.

6.2 Methods for Comparison
The clustering methods in our experiments are named as

follows:

• r2-nmf-hier: Hierarchical clustering based on rank-2
NMF with the algorithm proposed in this paper.

• nmf-hier: Hierarchical clustering based on standard
NMF with active-set based algorithm [10]. In our ex-
periments, multiplicative update rule algorithms [14]
for standard NMF are always slower and give similar
quality compared to active-set-type algorithms, thus
are not included in our results.

• nmf-flat: Flat clustering based on standard NMF
with block-pivoting based algorithm [11].

• kmeans-hier: Hierarchical clustering based on stan-
dard K-means. We use the hierarchical clustering work-
flow described in Algorithm 3; however, the term dis-
tribution associated with each node is given by the
centroid vector from the K-means run that generates
this node.

• kmeans-flat: Flat clustering based on standard K-
means.

• lda: Flat clustering using the Gibbs sampling algo-
rithm for LDA. We use a highly-optimized implemen-
tation in the software MALLET3 written in Java. LDA
is not run for RCV1-labeled and RCV1-full due to ef-
ficiency reasons.

Hierarchical clustering and flat clustering cannot be com-
pared against each other directly. We evaluate the hierarchy
by taking snapshots of the tree as leaf nodes are generated,
and because leaf nodes are non-overlapping, we treat all the
leaf nodes in each snapshot as a flat partitioning. Thus, if
the maximum number of leaf nodes is c, we produce c − 1
flat partitionings forming a hierarchy.

For each method, we perform 20 runs on medium-scale
data sets and 5 runs on large-scale data sets starting from
random initializations. Average measurements are reported.
Note that for flat clustering methods, each run consists of
c− 1 separate executions with the number of clusters set to
2, 3, · · · , c.

The maximum number of leaf nodes c is set to be the
number of ground-truth classes at the deepest level (see Ta-
ble 2). The hierarchical clustering workflow (Algorithm 3)
runs with parameters β = 9, T = 3 (for r2-nmf-hier and
nmf-hier) or 5 (for kmeans-hier). The K-means imple-
mentation is our optimized version of the Matlab kmeans

function, which has a batch-update phase and a more time-
consuming online-update phase. We use both phases for
medium-scale data sets and only the batch-update phase for
large-scale data sets. Every method is implemented with
multi-threading.
3http://mallet.cs.umass.edu/

6.3 Evaluation Measures
Each of the six methods described above can be regarded

as both a clustering method and a topic modeling method.
We use the following two measures to evaluate their quality:

1. Normalized mutual information (NMI): This is a mea-
sure of the similarity between two flat partitionings. It is
used to evaluate clustering quality and is only applicable to
data sets with ground-truth classes. It is particularly useful
when the number of generated clusters is different from that
of ground-truth classes and can be used to determine the op-
timal number of clusters. More details can be found in [18].
For data sets with defined hierarchy, we compute NMI be-
tween a generated partitioning and the ground-truth classes
at each level of the tree; if the tree has depth L, then we
compute L measures corresponding to each level.

2. Coherence: This is a measure of intra-topic similarity
in topic models [20, 1]. Given the top words f1, · · · , fK for
a topic, coherence is computed as

coherence =

KX
i=1

KX
j=i

„
log

D(fi, fj) + ε

D(fi)

«
(18)

where D(fi) is the document frequency of fi. D(fi, fj) is
the number of documents that contain both f1 and f2, and
ε is a smoothing parameter. We use ε = 1 and K = 20 [20].
The coherence averaged over all the topics is reported.

6.4 Timing Results
Timing results of the six methods are shown in Fig. 3.

Hierarchical clustering based on rank-2 NMF is much faster
than flat clustering using NMF or LDA. These results have
verified our complexity analysis in Section 2, that flat clus-
tering based on standard NMF exhibits a superlinear trend
while hierarchical clustering based on rank-2 NMF exhibits
a linear trend of running time as k increases. The first two
plots correspond to medium-scale data sets, and r2-nmf-

hier only requires about 1/3 the time needed by nmf-hier.
The other three plots correspond to large-scale data sets,
where we use logarithmic scale. K-means with only the
batch-update phase also runs fast; however, their cluster-
ing quality is not as good, which will be shown later.

The difference between our proposed algorithm and the
original active-set based algorithm for rank-2 NMF is less
substantial as the data size increases. The performance is
mainly bounded by the computation of Y TB in Algorithm 2.
Because B ∈ Rm×2

+ is a very long-and-thin matrix, Y TB es-
sentially behaves like a sparse matrix-vector multiplication,
which is a memory-bound operation. However, r2-nmf-hier
is still much faster than all the other methods: On RCV1-
full data set, r2-nmf-hier, nmf-hier, and nmf-flat cost
about 7 minutes, 12.5 minutes, and 6.5 hours, respectively.

6.5 Clustering Quality
Clustering quality is evaluated on labeled data sets, shown

in Fig. 4. The plot for the Cora data set is omitted for space
reasons. For data sets with a defined hierarchy, ground-
truth classes on the first 3 levels are used for evaluation, and
those on deeper levels produce similar results. nmf-hier has
identical results with r2-nmf-hier, thus is not shown here.
r2-nmf-hier is a very competitive method in general.

NMF-based methods give stably good clustering quality us-
ing both the flat and hierarchical schemes. Compared to
nmf-flat, we can clearly see the improved NMI values of



Table 2: Data sets used in our experiments.
Data sets Labeled? Has hierarchy? Size # terms # docs # nodes at each level

Reuters-21578 Y N medium-scale 12,411 7,984 20
20 Newsgroups Y Y medium-scale 36,568 18,221 6/18/20

Cora Y N large-scale 154,134 29,169 70
RCV1-labeled Y Y large-scale 115,679 496,756 4/15/28/39/40

RCV1-full N - large-scale 149,113 764,751 -

Figure 3: Timing results in seconds.
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Figure 4: NMI on labeled data sets. Scales of y-axis for the same data set are set equal.
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Figure 5: Coherence using the top 20 words for each topic.
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r2-nmf-hier. Although kmeans-flat achieves comparable
performances on RCV1-labeled, it performs poorly on other
data sets. A general trend is that the improvement in clus-
tering quality by r2-nmf-hier is more substantial when a
deeper level of the defined hierarchy is used for evaluation,
which correspond to more elaborated ground-truth classes.

We note that if NMI values are used for selecting the best
number of clusters for a data set, r2-nmf-hier and nmf-flat

frequently give different numbers (see the last two plots in
Fig. 4). Thus they tend to interpret a data set in differ-
ent ways. We also note that although kmeans-hier uses
the same hierarchical clustering workflow as r2-nmf-hier,
it performs poorly in most cases.

6.6 Semantic Quality of Topics
The coherence results for all the data sets are shown in

Fig. 5. None of these methods have consistent performances
when the number of clusters k is small; when k is large, r2-
nmf-hier gives the highest coherence value in 3 out of 5
cases. On RCV1 data set, r2-nmf-hier is a stably good
method in terms of topic coherence, while nmf-flat and
kmeans-hier have comparable performances sometimes but
perform very poorly otherwise. More study is needed to
understand the benefits of each method in terms of topic

coherence.

7. CONCLUSION
Hierarchical document clustering has a rich history in data

analysis and management [23]. In this paper, we considered
the divisive approach, which splits a data set in the top-down
fashion and offers a global view of the data set compared to
agglomerative clustering methods. In divisive hierarchical
clustering, a clustering method is needed at each splitting
step. However, it is not as easy as recursively applying any
flat clustering method available to generate a tree struc-
ture. As can be seen in our experiments, the widely-used
K-means clustering, when applied to hierarchical clustering,
frequently generates very unbalanced clusters that lead to a
poor organization of a corpus.

A good combination of a flat clustering method and a way
to determine the next node to split is important for efficient
and practical hierarchical clustering. In this paper, we pro-
posed such a combination and showed its promising perfor-
mance compared to other clustering methods such as NMF
and LDA. For the efficiency of each splitting step, we de-
signed a fast active-set-type algorithm for rank-2 NMF. Our
algorithm has redundant computation but has continuous
memory access, allowing better use of the cache; thus, it is



faster than existing active-set-type algorithms. We also pro-
posed a scoring method in the hierarchical clustering work-
flow, which provides a way to evaluate the potential of each
leaf node to be split into two well-separated clusters and can
be used to determine when to stop splitting. Outlier detec-
tion is also included in the overall workflow. Our method
generated a binary tree structure of the full RCV1 data set
in 7 minutes on a shared-memory machine with quad-core
CPUs, compared to standard NMF which costs 6.5 hours.

We conclude by listing several shortcomings of the current
method for further research. First, after a node is split, each
document has a hard assignment to one of the two generated
leaf nodes. It would be more flexible to enable soft assign-
ments. Second, the performance of our proposed algorithm
for rank-2 NMF is bounded by that of sparse matrix-vector
multiplication (SpMV) when the data size is very large. The
efficiency of our algorithm can be further boosted by using
a more efficient SpMV implementation or moving to a dis-
tributed platform. Currently, our method can be used to
build a hierarchical organization of documents efficiently on
a single machine, possibly as part of a large machine learning
infrastructure with many machines.
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