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CHAPTER

ONE

ABOUT

SmallK is a high performance software package for constrained low rank matrix approximation via the nonnegative
matrix factorization (NMF). Algorithms for NMF compute the low rank factors of a matrix producing two nonnegative
matrices whose product approximates the original matrix. The role of NMF in data analytics has been as significant
as the singular value decomposition (SVD). However, due to nonnegativity constraints, NMF has far superior inter-
pretability of its results for many practical problems such as image processing, chemometrics, bioinformatics, topic
modeling for text analytics and many more. Our approach to solving the NMF nonconvex optimization problem has
proven convergence properties and is one of the most efficient methods developed to date.

1.1 Distributed Versions

Recently open sourced: MPI-FAUN! Both MPI and OPENMP implementations for MU, HALS and ANLS/BPP based
NMF algorithms are now available. The implementations can run off the shelf or can be easily integrated into other
source code. These are very highly tuned NMF algorithms to work on super computers. We have tested this software
in NERSC as well OLCF cluster. The openmp implementation is tested on many different linux variants with intel
processors. The library works well for both sparse and dense matrices.

Please visit MPI-FAUN text1 for more information and source code.

1.2 Ground truth data for graph clustering and community detection

Community discovery is an important task for revealing structures in large networks. The massive size of contemporary
social networks poses a tremendous challenge to the scalability of traditional graph clustering algorithms and the
evaluation of discovered communities.

Please visit dblp ground truth data2 to obtain the data.

For U.S. Patent data go test hybrid clustering of content and connection structure using joint NMF go to patent data3

to view the readme.
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1 https://github.com/ramkikannan/nmflibrary
2 https://github.com/smallk/smallk_data/tree/master/dblp_ground_truth
3 https://github.com/smallk/smallk_data/tree/master/patent
4 http://www.darpa.mil/staff/mr-wade-shen
5 http://www.cc.gatech.edu/~hpark/
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CHAPTER

TWO

INTRODUCTION

2.1 Background

High-dimensional data sets are ubiquitous in data science, and they often present serious problems for researchers. Our
work in dimensionality reduction focuses on, but is not limited to, low rank approximations via nonnegative matrix
factorization (NMF) [see Publications [1,2]6]. NMF is a non-convex optimization problem with important applications
in data and interactive visual analytics of high-dimensional data.

The impetus for this documentation is to provide a step-by-step procedure for the application of the theory to real-world
large-scale data analytics problems. We have instantiated our research efforts in a software framework that includes
high-level driver code via Python and a simple command line interface, SmallK, which hides most of the details of
the input parameters. Our low-level code, also usable from the command line, is written in C++, which provides
efficient NMF algorithms. The algorithms discussed herein have numerous practical applications; this document and
the tutorials7 will provide the information required to quickly begin real work.

Below is a brief description of our fundamental research on NMF algorithms. Following the brief motivational intro-
duction to the NMF are detailed installation instructions for the SmallK software library.

2.2 Constrained low rank approximations and NMF

Algorithms that enable dimension reduction and clustering are two critical areas in data analytics and interactive visual
analysis of high-dimensional data. A low rank approximation framework has the ability to facilitate faster processing
times and utilize fewer resources. These approximations provide a natural way to compute only what we need for
significant dimension reduction, and are analogous to singular value decomposition (SVD) and principal component
analysis (PCA). Our algorithm framework also works efficiently for clustering since clustering can be viewed as a
specific way of achieving a low rank approximation so that the cluster structure of the data is well represented in a few
basis vectors.

Matrix low rank approximations such as the SVD have played a key role as a fundamental tool in machine learning,
data mining, and other areas of computational science and engineering. The NMF has recently emerged as an important
constrained low rank approximation method as well. A distinguishing feature of the NMF is the requirement of
nonnegativity: NMF is considered for high-dimensional and large scale data in which the representation of each
element is inherently nonnegative, and it seeks low rank factor matrices that are constrained to have only nonnegative
elements. There are many examples of data with a nonnegative representation. In a standard term-frequency encoding,
a text document is represented as a vector of nonnegative numbers since each element represents the number of
appearances of each term in each document. In image processing, digital images are represented by pixel intensities,
which are nonnegative. In the life sciences, chemical concentrations or gene expression levels are naturally represented
as nonnegative data.

6 http://smallk.github.io/publications/
7 http://smallk.github.io/documentation/tutorials/
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Our algorithm framework utilizes various constraints on the non-convex optimization problem that gives rise to the
nonnegative factors. With these various constraints NMF is a versatile tool for a large variety of data analytics prob-
lems. NMF algorithms have been an active area of research for several years. Since much of the data for many
important problems in numerous domains is nonnegative NMF is the correct computational model for mining and/or
integrating information from such data. NMF also offers enhanced interpretation of results since nonnegativity of the
data is preserved.

2.3 SmallK Overview

The SmallK library provides routines for low rank matrix approximation via nonnegative matrix factorization (NMF).
The term “nonnegative matrices” means that for a given matrix all of it’s elements are greater than or equal to zero,
which we express as ≥ 0.

Given a nonnegative matrix 𝐴, the SmallK software computes nonnegative matrices 𝑊 and 𝐻 such that 𝐴 ∼= 𝑊𝐻

The matrix 𝐴 has m rows and n columns and can be either sparse or dense. 𝑊 has m rows and k columns, and 𝐻
has k rows and n columns. The value of k is an input parameter to the approximation routines; typically k ≪ m and k
≪ n. Where k is the reduced rank of the low rank approximation and, in applications, it represents, for example, the
reduced dimension in dimension reduction, number of clusters for clustering various data sets, or the number of topics
in topic discovery.

NMF algorithms seek to approximate a matrix 𝐴 by the product of two much smaller matrices 𝑊 and 𝐻 . The
idea is to choose the smallest value of k (width of 𝑊 and height of 𝐻) that gives an acceptable approximation
error. Due to the nonconvex nature of the optimization problem associated with finding 𝑊 and 𝐻 , they can only be
approximated after an NMF algorithm satisfies a convergence criterion to a local minimum. Thus, the minimization of
the objective function proceeds iteratively, attempting to reach a stationary point, which is the best possible solution.
As the iterations proceed, the SmallK code computes a metric that estimates the progress and, when the metric falls
below a user-specified tolerance, the iterations stop and convergence is declared [see [Publications [2]8] for a detailed
discussion].

The SmallK library provides implementations of several different NMF algorithms. These algorithms are:

1. Multiplicative Updating (NMF-MU)

2. Hierarchical Alternating Least Squares (NMF-HALS)

3. Block Principal Pivoting (NMF-BPP)

4. Rank2 Specialization (NMF-RANK2)

SmallK also provides implementations of hierarchical and flat clustering. These routines are:

1. Hierarchical Clustering via NMF-RANK2

2. Flat Clustering via NMF-RANK2

3. Flat Clustering via NMF-BPP or NMF-HALS

The suite of SmallK implementations of NMF algorithms are suitable in many applications such as image processing,
interactive visual analytics, speckle removal from SAR images, recommender systems, information fusion, outlier
detection, chemometrics, and many more.

The SmallK library requires either MacOSX or Linux. A Windows version via a Vagrant installation is also available.

8 http://smallk.github.io/publications/
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2.4 Prerequisites

The following list is the software packages/libraries required to build the SmallK NMF library code:

• A modern, C++11-compliant compiler, such as g++ 4.9 or later

• Elemental9, a high-performance library for dense, distributed linear algebra, which requires:

– An MPI installation, such as OpenMPI10 or mpich11

– BLAS implementation, hopefully optimized/tuned for the local system

– libFLAME12: a high-performance library for dense numerical linear algebra

– CMake

• Python 2.7 (optional), including the following libraries (required to build the Python interface to SmallK, which
is optional):

– numpy

– scipy

– cython

Elemental can make use of OpenMP or mpich parallelization if available, which is generally advantageous for large
problems. The SmallK code is also internally parallelized to take full advantage of multiple CPU cores for maximum
performance. SmallK does not currently support distributed computation, but this is planned for future updates.

The SmallK software supports the latest stable release of Elemental, version 0.85

Check the documentation links on this page for additional detailed instructions for installation of the SmallK library
software and dependencies. If desired, please see also the installation instructions for Elemental13.

9 http://libelemental.org/
10 http://www.open-mpi.org/software/ompi/v1.6/
11 http://http://www.mpich.org/
12 http://www.cs.utexas.edu/~flame/web/libFLAME.html
13 http://libelemental.org/documentation/
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THREE

QUICKSTART - INSTALLATION

3.1 Vagrant Virtual Machine

Installing SmallK into a virtual machine (OSX, Linux, Windows) is intended for those who are not doing development
and/or do not have a reason to do the full installation on Linux or OSX outlined in the sections to follow.

The complete stack of software dependencies for SmallK as well as SmallK itself can be rapidly set up and configured
through use of Vagrant and VirtualBox and the files included in the repository. The Vagrant install has been tested on
Linux Ubuntu 16.04, Mac OSX Sierra 10.12.6, and Windows 10.

Note that the smallk/vagrant/bootstrap.sh file can be modified to perform various tasks when provisioning
the vagrant session. Consider customizing bootstrap.sh to set up a custom install of libsmallk as required.

To deploy the SmallK VM:

1. Install Vagrant14 and VirtualBox15.

Tip: Note: For Windows, ensure that you have a VirtualBox version >= 4.3.12. After installing Vagrant, you may
need to log out and log back in to ensure that you can run vagrant commands in the command prompt.

Optional: git clone the smallk_data16 repository so that it is parallel with the smallk repository. This is an
alternate way to test the installation and begin to work with SmallK. This directory can be synced with a directory of
the same name in the VM by adding or uncommenting the following line in smallk/vagrant/Vagrantfile:

config.vm.synced_folder "../../smallk_data", "/home/vagrant/smallk_data"

2. From within the smallk/vagrant directory, run:

vagrant up

This can take as long as an hour to build the VM, which will be based on a minimal Ubuntu 16.04 installation. The
smallk/vagrant/Vagrantfile can be customized in many ways to change the specifications for the VM that
is built. See more information here17. The default configuration provides the VM with 4 GB of memory and 3 CPUs.
Increasing these allocations will improve the performance of the application. This can be done by modifying these
lines in the Vagrantfile:

vb.memory = 4096
vb.cpus = 3

14 http://www.vagrantup.com/downloads.html
15 https://www.virtualbox.org/wiki/Downloads
16 https://github.com/smallk/smallk_data
17 http://docs.vagrantup.com/v2/
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After vagrant up has completed, the SmallK and pysmallk libraries will have been built and tested. Additionally,
the smallk_data directory, if cloned as in the optional step above, will have been synced into the VM. For more
details regarding what is being built and executed while provisioning the VM, please inspect smallk/vagrant/
bootstrap.sh.

3. Once the VM has been built, run:

vagrant ssh

Tip: Note: For Windows, you will need an ssh client in order to run the above command. This can be obtained via
CygWin18 MinGW19, or Git20. If you would like to use PuTTY to connect to your virtual machine, follow these21

instructions.

In case you need it, the username/password for the VM created will be vagrant/vagrant.

This will drop you into the command line of the VM that was just created, in a working directory at /home/vagrant.
From there, you can navigate to /home/vagrant/libsmallk-<version>, (e.g., libsmallk-1.6.2), and run:

make check PYSMALLK=1 ELEMVER=0.85 DATA_DIR=../smallk_data

to verify your installation was successful.

4. To test the installation at the command line, run:

nmf

This will produce the help output for the nmf library function:

Usage: nmf
--matrixfile <filename> Filename of the matrix to be factored.

Either CSV format for dense or MatrixMarket format
→˓for sparse.

--k <integer value> The common dimension for factors W and H.
[--algorithm BPP] NMF algorithms:

MU: multiplicative updating
HALS: hierarchical alternating least squares
RANK2: rank2 with optimal active set selection
BPP: block principal pivoting

[--stopping PG_RATIO] Stopping criterion:
PG_RATIO: Ratio of projected gradients
DELTA: Change in relative F-norm of W

[--tol 0.005] Tolerance for the selected stopping criterion.
[--tolcount 1] Tolerance count; declare convergence after this many

iterations with metric < tolerance; default is to
declare convergence on the first such iteration.

[--infile_W (empty)] Dense mxk matrix to initialize W; CSV file.
If unspecified, W will be randomly initialized.

[--infile_H (empty)] Dense kxn matrix to initialize H; CSV file.
If unspecified, H will be randomly initialized.

[--outfile_W w.csv] Filename for the W matrix result.
[--outfile_H h.csv] Filename for the H matrix result.
[--miniter 5] Minimum number of iterations to perform.
[--maxiter 5000] Maximum number of iterations to perform.

18 https://www.cygwin.com/
19 http://sourceforge.net/projects/mingw/files/
20 http://git-scm.com/downloads
21 https://github.com/Varying-Vagrant-Vagrants/VVV/wiki/Connect-to-Your-Vagrant-Virtual-Machine-with-PuTTY
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[--outprecision 6] Write results with this many digits of precision.
[--maxthreads 3] Upper limit to thread count.
[--normalize 1] Whether to normalize W and scale H.

1 == yes, 0 == no
[--verbose 1] Whether to print updates to the screen.

1 == print updates, 0 == silent

5. To test the installation of pysmallk, attempt to import numpy and pysmallk; numpy must be imported BEFORE
pysmallk is imported. Running the following command from the command line should produce no output:

python -c "import numpy; import pysmallk"

If there is no import error, pysmallk was installed correctly and is globally available.

6. When you are ready to shut down the VM, run exit from within the vagrant machine, then run one of the following
from the command line of your host machine (wherever vagrant up was executed):

Save the current running state:

vagrant suspend

Gracefully shut down the machine:

vagrant halt

Remove the VM from your machine (this will require rebuilding the VM to restart it):

vagrant destroy

If you want to work with the VM again, from any of the above states you can run:

vagrant up

again and the VM will be resumed or recreated.

3.2 Docker Instructions

Running SmallK in a Docker container is intended for those who would like a fast, simple install that keeps their
environment unmodified, in exchange for a loss in runtime performance. The basic process is to first build the Docker
image, then run the Docker container to execute the desired command.

1. Install Docker22. If you are new to Docker, it may be worth exploring a quick introduction23, or at least a cheat-
sheet24. There are platform specific25 installation, configuiration, and execution instructions for Mac, Windows, and
Linux. The following instructions were tested on Ubuntu 16.04 with Docker version 17.06.0-ce.

2. Build the smallk Docker image.

First, make sure you have all submodules and their own submodules. From within the root of the smallk directory,
run:

git submodule update --init --recursive

22 https://docs.docker.com/engine/installation/
23 https://docs.docker.com/get-started/
24 https://github.com/wsargent/docker-cheat-sheet
25 https://docs.docker.com/manuals/
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Now we can build the image. In the same (project root) directory, run this:

docker build -t smallk .

This will download all dependencies from the Ubuntu repositories, PyPI, GitHub, etc. Everything will be built includ-
ing smallk itself. You will end up with a Docker image tagged “smallk”. At the end of the build process you should
see the following:

Step 40/40 : CMD /bin/bash
---> Running in 3fdb5e73afdc
---> f8afa9f6a532

Removing intermediate container 3fdb5e73afdc
Successfully built f8afa9f6a532
Successfully tagged smallk:latest

This can take as long as an hour to build the image, which is based on a minimal Ubuntu 16.04 installation. The
smallk/Dockerfile can be customized in many ways to change the specifications for the image that is built.

3. Run the Docker container.

The Docker container may be executed from any directory. Regardless of where you run it, you will need a volume for
any input/output data. As an example, you may run the built-in PySmallk tests. The instructions below assume that
your work directory is named /home/ubuntu. Replace it with the appropriate name. (The Docker daemon requires
an absolute path for the local volume reference.):

cd /home/ubuntu
git clone https://github.com/smallk/smallk_data.git smallk_data
docker run --volume /home/ubuntu/smallk_data:/data smallk make check PYSMALLK=1
→˓ELEMVER=0.85 DATA_DIR=/data

Here is a breakdown of that Docker command to explain each part:

• docker run: Run a new container from an image

– --volume: Add a volume (persistent storage area) to the container

* /home/ubuntu/smallk_data: Local absolute path that will be exposed within the running con-
tainer

* /data: Internal path to use within the container

– smallk: Image tag from which to spawn the new container

– make check PYSMALLK=1 ELEMVER=0.85: Command to run within the container (run the smallk
test suite)

* DATA_DIR=/data: Tell the test suite where the local data is stored (from the perspective of the
container)

If your execution of the PySmallk tests is successful, you should see a lot of output, ending with the following lines:

assignment file test passed

***** PysmallK: All tests passed. *****
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CHAPTER

FOUR

QUICKSTART - SMALLK API

4.1 Introduction

This document describes how to use the SmallK library to perform nonnegative matrix factorization (NMF), hierarchi-
cal clustering, and flat clustering. It is assumed that the library has been installed properly, that all tests have passed,
and that the user has created the SMALLK_INSTALL_DIR environment variable as described in the documentation.
SmallK provides a very simple interface to NMF and clustering algorithms. Examples of how to use this interface
are described in this document. The SmallK distribution also provides a suite of command-line tools for NMF and
clustering, suitable for advanced users.

4.2 C++ Project Setup

The SmallK distribution includes an examples folder containing two files: smallk_examples.cpp and a
Makefile. To build the example CPP file, open a terminal window, cd to the smallk/examples folder, and
run the command make.

If the SmallK library has been installed properly and the smallk_data26 repository has been cloned at the same directory
level as the SmallK library repository, the project should build and the binary file bin/example will be created. To run
the example, run this command from the smallk/examples folder:

./bin/example ../../smallk_data

Results will appear for the following algorthms:

Running NMF-BPP using k=32
Running NMF-HALS using k=16
Running NMF-RANK2 with W and H initializers
Repeating the previous run with tol = 1.0e-5
Running HierNMF2 with 5 clusters, JSON format
Running HierNMF2 with 10 clusters, 12 terms, XML format
Running HierNmf2 with 18 clusters, 8 terms, with flat

The output files will be written to the directory where the binary example is run. In the above, the outputs will be
written to the <SmallK dir>/examples.

To experiment with the SmallK library, make a backup copy of smallk_examples.cpp as follows:

cp smallk_examples.cpp smallk_examples.cpp.bak

26 https://github.com/smallk/smallk_data
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The file smallk_examples.cpp can now be used for experimentation. The original file can be restored from the
backup at the user’s discretion.

Delete lines 61-255 from smallk_examples.cpp (everything between the opening and closing braces of the try
block). New code will be added between these braces in the steps below.

All of the examples described in this document use a matrix derived from Reuters articles. This matrix will be referred
to as the Reuters matrix. It is a sparse matrix with 12411 rows and 7984 columns.

The SmallK documentation contains complete descriptions of all SmallK functions mentioned in this guide.

4.3 Load a Matrix

Suppose you want to perform NMF or clustering on a matrix. The first action to take is to load the matrix into SmallK
using the LoadMatrix function. This function accepts either dense matrices in CSV format or sparse matrices in
MatrixMarket format. Since we want to perform NMF and clustering on the Reuters matrix, we need to supply the
path to the Reuters matrix file (reuters.mtx) as an argument to LoadMatrix. This path has already been setup in
the code; the appropriate string variable is called filepath_matrix. Enter the following line after the opening
brace of the try block after line 61:

smallk::LoadMatrix(filepath_matrix);

Save the file and run the following commands, which should complete without error:

make clean
make

Once a matrix is loaded into SmallK it remains loaded until it is replaced with a new call to LoadMatrix. Thus, SmallK
makes it easy to experiment with different factorization or clustering parameters, without having to reload a matrix
each time.

4.4 Perform NMF on the Loaded Matrix

Having loaded the Reuters matrix, we can now run different NMF algorithms and factor the matrix in various ways.
The SmallK code factors the loaded matrix (denoted by A) as 𝐴 ∼= 𝑊𝐻 , where A is mxn, W is mxk, and H is
kxn. The NMF is a low-rank approximation where the value of k, the rank, is an input parameter to the factorization
routines, and is generally much smaller than either m or n. Matrix A can be either sparse or dense; matrices W and H
are always dense.

4.4.1 NMF-BPP

Let’s use the default NMF-BPP algorithm to factor the 12411 x 7984 Reuters matrix into W and H with a k value of
32. Add the following lines to the code:

MsgBox("Running NMF-BPP using k=32");
smallk::Nmf(32);

Build the code as described above; then run it with this command:

./bin/example ../smallk_data
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The MsgBox function prints the string supplied as argument to the screen; this function is purely for annotating
the output. The Nmf function performs the factorization and generates two output files, w.csv and h.csv, which
contain the matrix factors. The files are written to the current directory. SmallK can write these files to a specified
output directory via the SetOutputDir function, but we will use the current directory for the examples in this guide.

4.4.2 NMF-HALS

Now suppose we want to repeat the factorization, this time using the NMF-HALS algorithm with a k value of 16.
Since the BPP algorithm is the default, we need to explicitly specify the algorithm as an argument to the Nmf function.
Add these lines to the code:

MsgBox("Running NMF-HALS using k=16")
smallk::Nmf(16, smallk::Algorithm::HALS);

Build and run the code again; you should observe that the code now performs two separate factorizations.

4.4.3 NMF Initialization

The SmallK library provides the capability to explicitly initialize the W and H factors. For the previous two examples,
these matrices were randomly initialized, since no initializers were provided in the call to the Nmf function. The data
directory contains initializer matrices for the W and H factors of the Reuters matrix, assuming that k has a value of
2. To illustrate the use of initializers, we will use the RANK2 algorithm to factor the Reuters matrix again, using a
k-value of 2, but with explicit initializers. Add these lines to the code:

MsgBox("Running NMF-RANK2 with W and H initializers");
smallk::Nmf(2, smallk::Algorithm::RANK2, filepath_w, filepath_h);

Build and run the code again, and observe that the code performs three separate factorizations.

The string arguments filepath_w and filepath_h are configured to point to the W and H initializer matrices in the data
directory. Note how these are supplied as the third and fourth arguments to Nmf. For general matrix initializers,
the W initializer must be a fully-dense matrix, in CSV format, with dimensions mxk, and the H initializer must be a
fully-dense matrix, in CSV format, with dimensions kxn.

The main purpose of using initializer matrices is to generate deterministic output, such as for testing, benchmarking,
and performance studies. You will notice that if you run the code repeatedly, the first two factorizations, which use
random initializers, generate results that vary slightly from run to run. The third factorization, which uses initializers,
always generates the same output on successive runs.

Typically the use of initializers is not required.

4.5 Hierarchical Clustering

Now let’s perform hierarchical clustering on the Reuters matrix. To do this, we must first load the dictionary (or
vocabulary) file associated with the Reuters data (a file called reuters_dictionary.txt). A string variable
containing the full path to this file is provided in the filepath_dict variable. Add the following line to the code
to load the Reuters dictionary:

smallk::LoadDictionary(filepath_dict);

As with the matrix file, the dictionary file remains loaded until it is replaced by another call to LoadDictionary.
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With the matrix file and the dictionary file both loaded, we can perform hierarchical clustering on the Reuters data.
For the first attempt we will generate a factorization tree containing five clusters. The number of clusters is specified
as an argument to the clustering function. Add these lines to the code:

MsgBox("Running HierNMF2 with 5 clusters, JSON format");
smallk::HierNmf2(5);

Build and run the code.

The hierarchical clustering function is called HierNmf2. In the call above it will generate five clusters and generate
two output files. One file will be called assignments_5.csv, a CSV file containing the cluster labels. The first
entry in the file is the label for the first column (document) of the matrix; the second entry is the label for the second
column, etc. Any entries that contain -1 are outliers; these represent the documents that were not assigned to any
cluster.

The other output file will be called tree_5.json, a JSON file containing the cluster information. This file contains
sufficient information to unambiguously reconstruct the factorization tree. If you open the file and examine the contents
you can see the top terms assigned to each node. Leaf nodes have -1 for their left and right child indices. From an
examination of the keywords at the leaf nodes, it is evident that this collection of Reuters documents is concerned with
financial topics.

4.6 Flat Clustering

For the final example, let’s generate a flat clustering result in addition to the hierarchical clustering result. We will also
increase the number of terms per node to 8 and the number of clusters to 18. Add the following lines to the code:

MsgBox("Running HierNmf2 with 18 clusters, 8 terms, with flat");
smallk::SetMaxTerms(8);
smallk::HierNmf2WithFlat(18);

Build and run the code.

The call to SetMaxTerms increases the number of top terms per node. The next line runs the hierarchical clustering
algorithm and also generates a flat clustering result. This time, four output files are generated. They are:

1. assignments_18.csv: assignments from hierarchical clustering

2. assignments_flat_18.csv: assignments from flat clustering

3. tree_18.json, the hierarchical factorization tree

4. clusters_18.json, the flat clustering results

These examples demonstrate how easy it is to use SmallK for NMF and clustering. There are additional functions in
the SmallK interface, described in the documentation, installation section, which allows users to set various parameters
that affect the NMF-based algorithms of SmallK. The default values for all such parameters are very reasonable, and
most users will likely not ever need to change these parameters.

The smallk_examples.cpp file and the associated makefile can be used as a starting point for your own NMF
and clustering projects.

4.7 Disclaimer

This software is a work in progress. It will be updated throughout the course of the XDATA program with additional
algorithms and examples. The distributed NMF factorization routine uses sequential algorithms, but it replaces the
matrices and matrix operations with distributed versions. The GA Tech research group is working on proper distributed
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NMF algorithms, and when such algorithms are available they will be added to the library. Thus the performance of
the distributed code should be viewed as being the baseline for our future distributed NMF implementations.

4.8 Contact Info

For comments, questions, bug reports, suggestions, etc., contact:

Barry Drake
Research Scientist
Information and Communications Laboratory (ICL)
Information and Cyber Sciences Directorate (ICSD)
Georgia Tech Research Institute (GTRI)
75 5TH St. NW STE 900
ATLANTA, GA 30308-1018
barry.drake@gtri.gatech.edu

Stephen Lee-Urban
Research Scientist
Information and Communications Laboratory (ICL)
Information and Cyber Sciences Directorate (ICSD)
Georgia Tech Research Institute (GTRI)
75 5TH St. NW STE 900
ATLANTA, GA 30308-1018
stephen.lee-urban@gtri.gatech.edu
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FIVE

INSTALLATION INSTRUCTIONS

5.1 Prerequisites

• A modern C++ compiler that supports the C++11 standard, such as the latest release of the GNU or clang
compilers

• Elemental27, a high-performance library for dense, distributed linear algebra, which requires:

– An MPI installation, such as OpenMPI28 and mpich29

– A BLAS implementation, preferably optimized/tuned for the local system

– libFLAME30: a high-performance library for dense linear algebra

– OpenMP31 (optional, see below)

– CMake

• Python 2.7, including the following libraries:

– numpy

– scipy

– cython version 0.22

5.1.1 Elemental

Elemental can make use of MPI parallelization if available. This is generally advantageous for large problems. The
SmallK code is also internally parallelized to take full advantage of multiple CPU cores for maximum performance.
SmallK does not currently support distributed computation. However, future updates are planned that provide this
capability. Please see the About32 page for information regarding distributed versions of many of the algorithms
within SmallK.

We strongly recommend that users install both the HybridRelease and PureRelease builds of Elemental33. OpenMP
is enabled in the HybridRelease build and disabled in the PureRelease build. So why install both? For smaller
problems the overhead of MPI can actually cause code to run slower than without it. Whereas for large problems MPI
parallelization generally helps, but there is no clear transition point between where it helps and where it hurts. Thus,
we encourage users to experiment with both builds to find the one that performs best for their typical problems.

27 http://libelemental.org/
28 http://www.open-mpi.org/software/ompi/v1.6/
29 http://www.mpich.org/
30 http://www.cs.utexas.edu/~flame/web/libFLAME.html
31 http://openmp.org/wp/
32 http://smallk.github.io/about/
33 http://libelemental.org/
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We also recommend that users clearly separate the different build types as well as the versions of Elemental on their
systems. Elemental is under active development, and new releases can introduce changes to the API that are not
backwards-compatible with previous releases. To minimize build problems and overall hassle, we recommend that
Elemental be installed so that the different versions and build types are cleanly separated.

Thus, two versions of Elemental need to be built. One is a hybrid release build with OpenMP parallelization, and
the other is the pure release build without OpenMP parallelization. A separate build folder will be created for each
build. The build that uses internal OpenMP parallelization is called a HybridRelease build; the build that doesn’t
is called a PureRelease build. The debug build is called a PureDebug build. The HybridRelease build is best for
large problems, where the problem size is large enough to overcome the OpenMP parallel overhead. The following is
for the 0.84 version of elemental. Set the version to that specified in the README.html file. Note that the files will
be installed in /usr/local/elemental/[version]/[build type].

The SmallK software supports the latest stable release of Elemental, version 0.85 and above.

5.1.1.1 How to Install Elemental on MacOSX

On MacOSX we recommend using Homebrew34 as the package manager. Homebrew does not require sudo privileges
for package installation, unlike other package managers such as MacPorts. Thus the chances of corrupting vital system
files are greatly reduced using Homebrew.

It is convenient to be able to view hidden files (like .file) in the MacOSX Finder. To do so run the following at the
command line:

defaults write com.apple.finder AppleShowAllFiles -bool YES

To revert back to hiding hidden files, set the Boolean flag to NO:

defaults write com.apple.finder AppleShowAllFiles -bool NO

If you use Homebrew, ensure that your PATH is configured to search Homebrew’s installation directory first. Home-
brew’s default installation location is /usr/local/bin, so that location needs to be first on your path. To check,
run this command from a terminal window:

cat /etc/paths

We also recommend running the following commands on a daily basis to refresh your brewed installations:

brew update
brew upgrade
brew cleanup
brew doctor

This will maintain your Homebrew installed software and diagnose any issues with the installations.

If the first entry is not /usr/local/bin, you will need to edit the /etc/paths file. This is a system file, so first
create a backup. Move the line /usr/local/bin so that it is on the first line of the file. Save the file, then close
the terminal session and start a new terminal session so that the path changes will take effect.

5.1.1.1.1 OSX:Install the latest GNU compilers

Elemental and SmallK both require a modern C++ compiler compliant with the C++11 standard. We recommend that
you install the latest stable version of the clang and GNU C++ compilers. To do this, first install the XCode command
line tools with this command:

34 http://mxcl.github.io/homebrew/
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xcode-select --install

If this command produces an error, download and install XCode from the AppStore, then repeat the command. If that
should still fail, install the command line tools from the XCode preferences menu. After the installation completes,
run this command from a terminal window:

clang++ --version

You should see output similar to this:

Apple LLVM version 8.1.0 (clang-802.0.42)
Target: x86_64-apple-darwin16.7.0
Thread model: posix
InstalledDir: /Library/Developer/CommandLineTools/usr/bin

The latest version of the GNU compiler at the time of writing is g++-7 (gcc 7.1.0), which is provided by the gcc home-
brew package. In addition to the gcc package, homebrew also provides a gcc49 package from the homebrew/versions
tap. If this alternative gcc49 package is installed on your system it will prevent homebrew from symlinking the gcc
package correctly. We recommend uninstalling the gcc49 versioned package and just using the gcc package instead.
The Fortran compiler provided with the gcc package will also be configured to properly build numpy, which is required
for the python interface to SmallK.

If you need to uninstall the gcc49 package, run the following commands:

brew uninstall gcc49
brew cleanup
brew doctor

Then install the gcc package as follows:

brew install gcc

The Apple-provided gcc and g++ will not be overwritten by this installation. The new compilers will be installed into
/usr/local/bin as gcc-7, g++-7, and gfortran-6. The Fortran compiler is needed for the installation of MPI and
for building the python interface to SmallK.

5.1.1.1.2 OSX:Install MPI Tools

Install the latest version of mpich35 with Homebrew as follows:

brew install mpich

We recommend installing mpich rather than openMPI due to some superior features of mpich (prior versions of Ele-
mental use openMPI, which can be installed using Homebrew as well). Also, Elemental 0.85 (discussed below) now
uses mpich. Please see some discussion regarding openMPI vs mpich at: http://stackoverflow.com/questions/2427399/
mpich-vs-openmpi

5.1.1.1.3 OSX:Install libFlame

Next we detail the installation of the high performance numerical library libflame. The library can be gotten from the
libflame git repository on github.

35 http://www.mpich.org/
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It’s important to perform the git clone into a subdirectory NOT called flame since this can cause name conflicts
with the installation. Typically, a git clone is performed into a directory called libflame. However, other directory
names will work as well. Please do not use the directory name ‘flame‘.

To obtain the latest version of the FLAME library, clone the FLAME git repository with this command:

git clone https://github.com/flame/libflame.git

Run the configure script in the top-level FLAME directory as follows (assuming the install path is /usr/local/
flame):

./configure --prefix=/usr/local/flame --with-cc=/usr/local/bin/gcc-6 --with-ranlib=/
→˓usr/local/bin/gcc-ranlib-6

A complete list of configuration options can be obtained by running ./configure --help.

After the configuration process completes, build the FLAME library as follows:

make -j4

The -j4 option tells Make to use four processes to perform the build. This number can be increased if you have a
more capable system. Libflame will be installed with the following command:

make install

The FLAME library is now installed.

5.1.1.1.4 OSX:Install Elemental

### Here is a recommended installation scheme for Elemental: ###

Choose a directory for the root of the Elemental installation. For example, this may be:

/usr/local/elemental

Download one of the SmallK-supported releases of Elemental, unzip and untar the distribution, and cd to the top-level
directory of the unzipped distribution. This directory will be denoted by UNZIP_DIR in the following instructions.

We now recommend using Elemental 0.85 or later. Earlier versions will no longer be supported.

5.1.1.1.4.1 HybridRelease Build

From the Elemental-0.85 directory, run the following command to create a local build directory for the HybridRelease
build:

mkdir build_hybrid
cd build_hybrid

Use the following CMake command for the HybridRelease build, substituting 0.85 for <VERSION_STRING>:

cmake -D CMAKE_INSTALL_PREFIX=/usr/local/elemental/<VERSION_STRING>/HybridRelease
-D CMAKE_BUILD_TYPE=HybridRelease
-D CMAKE_CXX_COMPILER=/usr/local/bin/g++-7
-D CMAKE_C_COMPILER=/usr/local/bin/gcc-7
-D CMAKE_Fortran_COMPILER=/usr/local/bin/gfortran-7
-D MATH_LIBS="/usr/local/flame/lib/libflame.a;-framework Accelerate"
-D ELEM_EXAMPLES=ON -D ELEM_TESTS=ON ..
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Note that we have installed g++-7 into /usr/local/bin and libFLAME into /usr/local/flame. Alter these
paths, if necessary, to match the installation location on your system.

Once the CMake configuration step completes, you can build Elemental from the generated Makefiles with the fol-
lowing command:

make -j4

The -j4 option tells Make to use four processes to perform the build. This number can be increased if you have a more
capable system.

After the build completes, install elemental as follows:

make install

For Elemental version 0.85 and later, you need to setup your system to find the Elemental dynamic libraries. Method
2 below is preferred:

1. If your Mac OSX is earlier than Sierra, then, in your startup script (~/.bash_profile) or in a terminal
window, enter the following command on a single line, replacing VERSION_STRING as above:

export DYLD_LIBRARY_PATH=
$DYLD_LIBRARY_PATH:/usr/local/elemental/VERSION_STRING/HybridRelease/lib/

2. If your Mac OSX is Sierra or higher Apple’s System Integrity Protection (SIP) will prevent using the
DYLD_LIBRARY_PATH variable. We highly discourage disabling SIP as a workaround. Instead, in your
startup script (~/.bash_profile) or in a terminal window, enter the following command on a single line,
replacing VERSION_STRING as above:

ln -s /usr/local/elemental/<VERSION_STRING>/HybridRelease/lib/*.dylib* /usr/local/lib

This will symlink the required Elemental libraries.

5.1.1.1.4.2 PureRelease Build

Run these commands to create a build directory for the PureRelease build:

cd ..
mkdir build_pure
cd build_pure

Then repeat the CMake configuration process, this time with the following command for the PureRelease build:

cmake -D CMAKE_INSTALL_PREFIX=/usr/local/elemental/<VERSION_STRING>/PureRelease
-D CMAKE_BUILD_TYPE=PureRelease -D CMAKE_CXX_COMPILER=/usr/local/bin/g++-7
-D CMAKE_C_COMPILER=/usr/local/bin/gcc-7
-D CMAKE_Fortran_COMPILER=/usr/local/bin/gfortran-7
-D MATH_LIBS="/usr/local/flame/lib/libflame.a;-framework Accelerate"
-D ELEM_EXAMPLES=ON -D ELEM_TESTS=ON ..

Repeat the build commands and install this build of Elemental.

For Elemental version 0.85 and later, you need to setup your system to find the Elemental dynamic libraries. Method
2 below is preferred:
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1. If your Mac OSX is earlier than Sierra, then, in your startup script (~/.bash_profile) or in a terminal
window, enter the following command on a single line, replacing VERSION_STRING as above:

export DYLD_LIBRARY_PATH=
$DYLD_LIBRARY_PATH:/usr/local/elemental/VERSION_STRING/HybridRelease/lib/

2. If your Mac OSX is Sierra or higher Apple’s System Integrity Protection (SIP) will prevent using the
DYLD_LIBRARY_PATH variable. We highly discourage disabling SIP as a workaround. Instead, in your
startup script (~/.bash_profile) or in a terminal window, enter the following command on a single line,
replacing VERSION_STRING as above:

ln -s /usr/local/elemental/<VERSION_STRING>/HybridRelease/lib/*.dylib* /usr/local/lib

This will symlink the required Elemental libraries.

The two builds of Elemental are now complete.

To test the installation, follow Elemental’s test instructions36 for the SVD test to verify that Elemental is working
correctly.

5.1.1.2 How to Install Elemental on Linux

We strongly recommend using a package manager for your Linux distribution for installation and configuration of the
required dependencies. We cannot provide specific installation commands for every variant of Linux, so we specify
the high-level steps below. The following was tested on a system with Ubuntu 16.04 installed.

5.1.1.2.1 Linux:Install the latest GNU compilers

We recommend installation of the latest stable release of the GNU C++ compiler, which is g++-6 at the time of this
writing.

Also, install the latest version of GNU Fortran, which is needed for the installation of the Message Passing Interface
(MPI) tools.

5.1.1.2.2 Linux:Install MPI Tools

Elemental version 0.85 and higher uses mpich37 for its MPI implementation.:

sudo apt-get update
sudo apt-get install mpich

This completes the installation of the MPI tools. It should also be noted that the Open MP implementation of the MPI
tools could also be used for the following installations.

5.1.1.2.3 Linux:Install libFlame

Next we detail the installation of the high performance numerical library libflame. The library can be gotten from the
libflame git repository on github.

36 http://libelemental.org/documentation/0.85/build.html
37 http://www.mpich.org/
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It’s important to perform the git clone into a subdirectory NOT called flame since this can cause name conflicts with
the installation. We normally do a git clone into a directory called libflame. However, other directory names will
work as well, but not flame.

To obtain the latest version of the FLAME library, clone the FLAME git repository with this command:

git clone https://github.com/flame/libflame.git

Run the configure script in the top-level FLAME folder as follows (assuming you want to install to /usr/local/
flame; if not, change the prefix path):

./configure --prefix=/usr/local/flame --with-cc=/usr/local/bin/gcc-6 --with-ranlib=/
→˓usr/local/bin/gcc-ranlib-6

A complete list of configuration options can be obtained by running:

./configure --help

Then build and install the code as follows:

make -j4
make install

This completes the installation of the FLAME library.

5.1.1.2.4 Linux:Install an accelerated BLAS library

It is essential to link Elemental with an accelerated BLAS library for maximum performance. Linking Elemental with
a ‘reference’ BLAS implementation will cripple performance, since the reference implementations are designed for
correctness not speed.

If you do not have an accelerated BLAS on your system, you can download and build OpenBLAS. Download, unzip,
and untar the tarball (version 0.2.19 as of this writing) and cd into the top-level folder. Build OpenBLAS with this
command, assuming you have a 64-bit system:

make BINARY=64 USE_OPENMP=1

Install with this command, assuming the installation directory is /usr/local/openblas/0.2.19/:

make PREFIX=/usr/local/openblas/0.2.19/ install

This completes the installation of OpenBLAS.

5.1.1.2.5 Linux:Install Elemental

### Here is our suggested installation scheme for Elemental: ###

We strongly recommend that users install both the HybridRelease and PureRelease builds of Elemental. MPI tools are
enabled in the HybridRelease build and disabled in the PureRelease build. So why install both? For smaller problems
the overhead of MPI can actually cause code to run slower than without it. On the other hand, for large problems, MPI
parallelization generally helps. However, there is no clear transition point between where it helps and where it hurts.
Thus, we encourage users to experiment with both builds to find the one that performs best for their typical problems.

Another strong recommendation is that users clearly separate the different build types as well as the versions of
Elemental on their systems. Elemental is under active development, and new releases can introduce changes to the

5.1. Prerequisites 23



SmallK: A Library for Nonnegative Matrix Factorization, Topic Modeling, and Clustering of
Large-Scale Data, Release 1.6.2

API that are not backwards compatible with previous releases. To minimize build problems and overall hassle, we
recommend that Elemental be installed so that the different versions and build types are cleanly separated.

Choose a directory for the root of the Elemental installation. A good choice is:

/usr/local/elemental

Download one of the SmallK-supported releases of Elemental (see above), unzip and untar the distribution, and cd
to the top-level folder of the unzipped distribution. This directory will be denoted by UNZIP_DIR in the following
instructions.

Note that Elemental version 0.85 or later is the version currently supported; earlier versions are not supported. If an
earlier version is needed for Linux, use the following instructions.

For the first step of the installation, for Elemental versions prior to 0.85, we need to fix a few problems with the CMake
configuration files. Open the following file in a text editor:

UNZIP_DIR/cmake/tests/OpenMP.cmake

On the first line of the file, change:

if(HYBRID)

to this:

if(ELEM_HYBRID)

Next, open this file in a text editor:

UNZIP_DIR/cmake/tests/Math.cmake

Near the first line of the file, change:

if(PURE)

to this:

if(ELEM_PURE)

Save both files.

Run these commands to create the required directories for the build types:

mkdir build_hybrid
mkdir build_pure

5.1.1.2.5.1 HybridRelease build

From the Elemental-<VERSION> folder, run the following command to change to the local build folder for the
HybridRelease build:

cd build_hybrid

For the first step of the installation, we need to fix a few problems with the CMake configuration files. Open the
following file in a text editor:
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Elemental-<VERSION>/cmake/tests/OpenMP.cmake

On the first line of the file, change:

if(HYBRID)

to this:

if(ELEM_HYBRID)

Next, open this file in a text editor:

Elemental-<version>/cmake/tests/Math.cmake

Near the first line of the file, change:

if(PURE)

to this:

if(ELEM_PURE)

Save both files.

Run the following command to create a local build folder for the HybridRelease build:

cd build_hybrid

Use the following CMake command for the HybridRelease build:

cmake -D CMAKE_INSTALL_PREFIX=/usr/local/elemental/<VERSION>/HybridRelease
-D CMAKE_BUILD_TYPE=HybridRelease -D CMAKE_CXX_COMPILER=/usr/local/bin/g++-6
-D CMAKE_C_COMPILER=/usr/local/bin/gcc-6
-D CMAKE_Fortran_COMPILER=/usr/local/bin/gfortran-6
-D MATH_LIBS="/usr/local/flame/lib/libflame.a;-L/usr/local/openblas/0.2.19/ -
→˓lopenblas -lm"
-D ELEM_EXAMPLES=ON -D ELEM_TESTS=ON ..

Note that we have installed g++-6 into /usr/local/bin and libFLAME into /usr/local/flame. Alter these
paths, if necessary, to match the installation location on your system.

If this command does not work on your system, you may need to define the BLAS_LIBS and/or GFORTRAN_LIB
config options.

Version 0.85 of Elemental has an error in one of its cmake files. The file is:

Elemental-0.85/cmake/tests/CXX.cmake

Modify the first line of this file from:

include(FindCXXFeatures)

to:

include_directories(FindCXXFeatures)

since FindCXXFeatures is now a directory. After this change, Elemental should Make without errors.
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Once the CMake configuration step completes, you can build Elemental from the generated Makefiles with the fol-
lowing command:

make -j4

The -j4 option tells Make to use four processes to perform the build. This number can be increased if you have a more
capable system.

After the build completes, install elemental as follows:

make install

After installing Elemental version 0.85, setup the system to find the Elemental shared library. Either in the startup script
(~/.bashrc) or in a terminal window, enter the following command on a single line, replacing VERSION_STRING
as above:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/elemental/VERSION_STRING/
→˓HybridRelease/lib/

5.1.1.2.5.2 PureRelease build

After this, run these commands to create a build folder for the PureRelease build:

cd ..
cd build_pure

Then repeat the CMake configuration process, this time with the following command for the PureRelease build:

cmake -D CMAKE_INSTALL_PREFIX=/usr/local/elemental/0.84-p1/PureRelease
-D CMAKE_BUILD_TYPE=PureRelease -D CMAKE_CXX_COMPILER=/usr/local/bin/g++-6
-D CMAKE_C_COMPILER=/usr/local/bin/gcc-6
-D CMAKE_Fortran_COMPILER=/usr/local/bin/gfortran-6
-D MATH_LIBS="/usr/local/flame/lib/libflame.a;-L/usr/local/openblas/0.2.19/ -
→˓lopenblas -lm"
-D ELEM_EXAMPLES=ON -D ELEM_TESTS=ON ..

If this command does not work on your system, you may need to define the BLAS_LIBS and/or GFORTRAN_LIB
config options.

Repeat the build commands and install this build of Elemental. Then, if you installed a version of Elemental prior to
the 0.84 release, edit the /usr/local/elemental/<version>/PureRelease/conf/ElemVars file and
replace the CXX line as indicated above.

Version 0.85 of Elemental has an error in one of its cmake files. The file is:

Elemental-0.85/cmake/tests/CXX.cmake

Modify the first line of this file from:

include(FindCXXFeatures)

to:

include_directories(FindCXXFeatures)

since FindCXXFeatures is now a directory. After this change, Elemental should Make without errors.
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If Elemental version 0.85 or later was installed, setup the system to find the Elemental shared library for the PureRe-
lease build. Enter the following command in a terminal window on a single line, replacing VERSION_STRING as
above:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/elemental/VERSION_STRING/
→˓PureRelease/lib/

Note: set this variable to point to either the HybridRelease or the PureRelease build of the Elemental shared library
whenever you want to use SmallK.

This completes the two builds of Elemental.

To test the installation, follow Elemental’s test instructions38 for the SVD test to verify that Elemental is working
correctly.

5.1.2 Installation of Python libraries

Note: the following section for installing the Python libraries can be skipped if not needed.

5.1.2.1 OSX:Install Python libraries

5.1.2.1.1 Install Python scientific packages

Assuming that you have used brew to install gcc, as indicated earlier, you can run the following commands to install
the necessary libraries:

brew install python
brew install numpy
brew install scipy

To check your installation, run:

brew test numpy

IMPORTANT: Check to see that your numpy installation has correctly linked to the needed BLAS libraries.

Ensure that you are running the correct python:

which python

This should print out /usr/local/bin/python. Open a python terminal by typing python at the command
line and run the following:

import numpy as np
np.__config__.show()

You should see something similar to the following:

lapack_opt_info:
extra_link_args = ['-Wl,-framework', '-Wl,Accelerate']
extra_compile_args = ['-msse3']
define_macros = [('NO_ATLAS_INFO', 3)]

blas_opt_info:

38 http://libelemental.org/documentation/0.85/build.html
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extra_link_args = ['-Wl,-framework', '-Wl,Accelerate']
extra_compile_args = ['-msse3', '-I/System/Library/Frameworks/vecLib.framework/Header
→˓']
define_macros = [('NO_ATLAS_INFO', 3)]

If you are using OpenBLAS, you should see that indicated as well.

5.1.2.1.2 Install Cython: a Python interface to C/C++

First install the Python Package Index utility, pip. Many Python packages are configured to use this package manager,
Cython being one.:

brew install pip

Only Cython 0.22 is supported at this time. To check which version is installed on your system use this commands:

$ python
>> import Cython
>> Cython.__version__
'0.22'
>>

To install Cython version 0.22 (if not already installed):

pip uninstall cython
pip install cython==0.22

Check the version of cython as above to ensure that Cython version 0.22 is installed.

5.1.2.2 Linux:Install Python libraries

The Python libraries can easily be installed via pip and apt-get with the following commands:

apt-get install pip
pip install numpy
apt-get install python-scipy
pip uninstall cython
pip install cython==0.22

This also ensures that cython version 0.22 is installed, which is the currently supported version. The Makefile assumes
an installation path of /usr/local/lib/python2.7/site-packages for the compiled library file. If you
are not using apt-get to install your packages, you will need to tell the Makefile where the appropriate site-packages
directory is located on your system. Setting the SITE_PACKAGES_DIR command line variable when running make
accomplishes this. If this doesn’t work, an alternative way to set this up is to add a line to the .bash_profile file
(always back up first):

export SITE_PACKAGES_DIR="<path to lib/python2.7>/site-packages/"

This allows for special installations of Python such as Continuum Analytics’ Anaconda39 distribution site-packages to
be accessed.

39 https://www.continuum.io/
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5.2 Build and Installation of SmallK

5.2.1 Obtain the Source Code

The source code for the SmallK library can be downloaded from the SmallK repository40 on github. Once downloaded
uncompress the tar ball and follow the installation instructions below.

5.2.2 Build the SmallK library

After downloading and unpacking the code tarball cd into the top-level libsmallk1_<version> directory, where
version is MAJOR.MINOR.PATCH (for example 1.6.2). The makefiles assume that you followed our suggested in-
stallation plan for Elemental. If this is NOT the case you will need to do one of the following:

1. Create an environment variable called ELEMENTAL_INSTALL_DIR which contains the path to the root folder
of your Elemental installation

2. Define the variable ELEMENTAL_INSTALL_DIR on the make command line

3. Edit the SmallK makefile so that it can find your Elemental installation

Assuming that the default install locations are acceptable, build the SmallK code by running this command from the
root directory of the distribution:

make all PYSMALLK=1 ELEMVER=0.85

or:

make all PYSMALLK=0 ELEMVER=0.85

This will build the SmallK and pysmallk (optional; see section [Installation of Python libraries]) below for setup of
the Python libraries) libraries and several command-line applications. These are:

1. libsmallk.a, the SmallK library

2. preprocess_tf, a command-line application for processing and scoring term-frequency matrices

3. matrixgen, a command-line application for generating random matrices

4. nmf, a command-line application for NMF

5. hierclust, a command-line application for fast hierarchical clustering

6. flatclust, a command-line application for flat clustering via NMF

7. pysmallk.so, if PYSMALLK=1 (0: default), the Python-wrapped SmallK library, making SmallK available
via Python

5.2.3 Install the SmallK library

To install the code, run this command to install to the default location, which is /usr/local/smallk:

make install PYSMALLK=1 ELEMVER=0.85

or:

40 https://github.com/smallk/smallk.github.io/tree/master/code
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make install PYSMALLK=0 ELEMVER=0.85

This will install the binary files listed above into the /usr/local/smallk/bin directory, which needs to be on
your path to run the executables from anywhere on your system and avoid prepending with the entire path. To install
the binary code to a different location, either create an environment variable called SMALLK_INSTALL_DIR and set
it equal to the desired installation location prior to running the install command, or supply a prefix argument:

make prefix=/path/to/smallk install

If PYSMALLK=1, this will install pysmallk.so into the site-packages directory associated with the Python binary, which
is determined by brew install python as discussed above or wherever the python distribution is installed on
the system, e.g., Continuum’s Anaconda Python41 distribution is installed in the user’s home directory. To install the
Python library to a different location, create an environment variable called SITE_PACKAGES_DIR and set it equal
to the desired installation location prior to running the install command, or supply this as an argument for make:

make SITE_PACKAGES_DIR=/path/to/site-packages install

Or, as a last resort, you can edit the top-level SmallK makefile to conform to the installation scheme of your system.
You may need root privileges to do the installation, depending on where you choose to install it.

Before testing the installation, the test code needs to access data. The data is located in a separate github repository
so that when cloning the code, the large amount of data is not included. The data repository is located on github at
smallk_data42:

5.2.4 Check the build and installation

To test the build, run this command with DATA_DIR set to wherever the SmallK data repository was cloned:

make check PYSMALLK=1 ELEMVER=0.85 DATA_DIR=../smallk_data

or:

make check PYSMALLK=0 ELEMVER=0.85 DATA_DIR=../smallk_data

This will run a series of tests, none of which should report a failure. Sample output from a run of these tests can be
found in section SmallK Test Results43.

Note: if you installed Elemental version 0.85, you will need to configure your system to find the Elemental shared
library. See the Elemental installation instructions above for information on how to do this.

The command-line applications can be built individually by running the appropriate make command from the top-level
SmallK directory. These commands are:

To build the smallk library only: ``make libsmallk``
To build the preprocessor only: ``make preprocessor``
To build the matrix generator only: ``make matrixgen``
To build the nmf only: ``make nmf``
To build hierclust only: ``make hierclust``
To build flatclust only: ``make flatclust``
To build pysmallk only: ``make pysmallk``

This completes the SmallK NMF library installation.

41 https://www.continuum.io/
42 https://github.com/smallk/smallk_data
43 http://smallk.github.io/documentation/tests/#smalk_tests
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5.3 Build and Installation of pysmallk shared library

Before building pysmallk, you must ensure that you have already built the standard SmallK library and applications:
libsmallk, preprocessor, matrixgen, hierclust, and flatclust.

All C++ and python libraries and applications can be built simultaneously by setting the PYSMALLK command line
variable:

make PYSMALLK=1

To build pysmallk individually from the pysmallk subdirectory (<path to SmallK>/
libsmallk-<version>/pysmallk):

make pysmallk

To check the library installation:

make pysmallk_check DATA_DIR=../smallk_data

This will run a series of tests, none of which should report a failure.

To install the shared library in a globally accessible location, enable the PYSMALLK command line variable and, if
needed, specify an INSTALLATION_DIR.

The Makefile assumes an installation path of /usr/local/lib/python2.7/site-packages for the com-
piled library file. If you are not using brew to install your packages, you will need to tell the Makefile where the
appropriate site-packages directory is located on your system. Setting the INSTALLATION_DIR command line
variable when running make accomplishes this. Also, make sure that there is not another site-packages directory
in your PATH before the site-packages you intend to use since make install will copy pysmallk.so to /usr/
local/lib/python2.7/site-packages by default. Other Python distributions will probably interfere with
the pysmallk installation.:

make install PYSMALLK=1 INSTALLATION_DIR=/usr/local/lib/python2.7/site-packages/

To uninstall the libraries:

.. code-block:: none

make uninstall PYSMALLK=1 INSTALLATION_DIR=/usr/local/lib/python2.7/site-packages/

5.4 Matrix file formats

The SmallK software supports comma-separated value (CSV) files for dense matrices and Matrix Market44 files for
sparse matrices.

For example, the 5x3 dense matrix:

42 47 52
43 48 53
44 49 54
45 50 55
46 51 56

would be stored in a CSV file as follows:

44 http://math.nist.gov/MatrixMarket/formats.html
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42,47,52
43,48,53
44,49,54
45,50,55
46,51,56

The matrix is loaded exactly as it appears in the file. Internally, SmallK stores dense matrices in column-major
order. Sparse matrices are stored in compressed column format.

5.5 Disclaimer

This software is a work in progress. It will be updated throughout the course of the XDATA program with additional
algorithms and examples. The distributed NMF factorization routine uses sequential algorithms, but it replaces the
matrices and matrix operations with distributed versions. The GA Tech research group is working on proper distributed
NMF algorithms, and when such algorithms are available they will be added to the library. Thus, the performance of
the distributed code should be viewed as being the baseline for our future distributed NMF implementations.

5.6 Contact Info

For comments, questions, bug reports, suggestions, etc., contact:

Barry Drake
Research Scientist
Information and Communications Laboratory (ICL)
Information and Cyber Sciences Directorate (ICSD)
Georgia Tech Research Institute (GTRI)
75 5TH St. NW STE 900
ATLANTA, GA 30308-1018
barry.drake@gtri.gatech.edu

Stephen Lee-Urban
Research Scientist
Information and Communications Laboratory (ICL)
Information and Cyber Sciences Directorate (ICSD)
Georgia Tech Research Institute (GTRI)
75 5TH St. NW STE 900
ATLANTA, GA 30308-1018
stephen.lee-urban@gtri.gatech.edu
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CHAPTER

SIX

COMMAND LINE TOOLS

6.1 Introduction

The SmallK library provides a number of algorithm implementations for low rank approximation of a matrix. These
can be used for performing various data analytics tasks such as topic modeling, clustering, and dimension reduction.
This section will provide more in-depth description of the tools available with examples that can be expanded/modified
for other application domains.

Before diving into the various tools, it will be helpful to set up the command line environment to easily run the various
executables that comprise the SmallK library. First the command line needs to know where to find the executable
files to run the tools. Since while installing SmallK make_install was run, the executables are located in /usr/
local/smallk/bin. Thus, this should be added to the $PATH system variable or added to the environment. The
following command line performs the task of modifying the path avoiding the need to cd into directories were the tools
are located:

export PATH=/usr/local/smallk/bin:$PATH

This allows the tools to be executed from any directory.

A subset of these tools are also available from the pysmallk library: smallkapi (mirrors the NMF command line
application), matrixgen, preprocessor, flatclust, and hierclust. The command line arguments are the same as those
documented below. These tools are available within the /pysmallk/tests/ directory and can be executed
as follows:

[python binary] [tool].py [command line arguments]

For example:

python preprocessor.py --indir smallk_data

6.2 Preprocessor

6.2.1 Overview

The preprocessor prunes rows and columns from term-frequency matrices, attempting to generate a result matrix that
is more suitable for clustering. It also computes tf-idf weights for the remaining entries. Therefore the input matrix
consists of nonnegative integers, and the output matrix consists of floating point numbers between 0.0 and 1.0. The
MatrixMarket file format is used for the input and output matrices.

Rows (terms) are pruned if a given term appears in fewer than DOCS_PER_TERM documents. The value of
DOCS_PER_TERM is a command-line parameter with a default value of 3. For a term-frequency input matrix, in
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which the matrix elements represent occurrence counts for the terms, this parameter actually specifies the minimum
row sum for each term. Any rows whose rowsums are less than this value will be pruned.

Columns (docs) are pruned if a given document contains fewer than TERMS_PER_DOC terms. The value of
TERMS_PER_DOC is a command-line parameter with a default value of 5.

Whenever columns (documents) are pruned the preprocessor checks the remaining columns for uniqueness. Any
duplicate columns are identified and a representative column is chosen as the survivor. The code always selects the
column with the largest column index in such groups as the survivor. The preprocessor continues to prune rows and
columns until it finds no further candidates for pruning. It then computes new tf-idf scores for the resulting entries and
writes out the result matrix in MatrixMarket format.

If the preprocessor should prune all rows or columns, it writes an error message to the screen and terminates without
generating any output.

6.2.2 Input Files

The preprocessor requires three input files: a matrix file, a dictionary file, and a document file. The matrix file
contains a sparse matrix in MatrixMarket format (.mtx). This is a term-frequency matrix, and all entries should be
positive integers. The preprocessor can also read in matrices containing floating-point inputs, but only if boolean
mode is enabled; this will be described below. The preprocessor does not support dense matrices, since the typical
matrices encountered in topic modeling problems are extremely sparse, with occupancies generally less than 1%.

The second file required by the preprocessor is a dictionary file. This is a simple ASCII text file containing
one entry per line. Entries represent keywords, bigrams, or other general text strings the user is interested in. Each line
of the file is treated as a keyword, so multi-word keywords are supported as well. The smallk/data folder contains a
sample dictionary file called dictionary.txt. The first few entries are:

triumph
dey
canada
finger
circuit
...

The third file required by the preprocessor is a documents file. This is another simple ASCII text file containing
one entry per line. Entries represent document names or other unique identifiers. The smallk/data folder also contains
a sample documents file called documents.txt. The first few entries of this file are:

52828-11101.txt
51820-10202.txt
104595-959.txt
60259-3040.txt
...

These are the unique document identifiers for the user who generated the file. Your identifiers will likely have a
different format.

Finally, the preprocessor requires these files to have the following names: matrix.mtx, dictionary.txt, and docu-
ments.txt. The input folder containing these files can be specified on the command line (described below). The
output of the preprocessor is a new set of files called reduced_matrix.mtx, reduced_dictionary.txt,
and reduced_documents.txt.
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6.2.3 Command Line Options

The preprocessor binary is called preprocess_tf, to emphasize the fact that it operates on term-frequency matri-
ces. If the binary is run with no arguments, it prints out the following information:

preprocess_tf
--indir <path>
[--outdir (defaults to current directory)]
[--docs_per_term 3]
[--terms_per_doc 5]
[--maxiter 1000]
[--precision 4]
[--boolean_mode 0]

Only the first parameter, --indir, is required. All remaining params are optional and have the default values
indicated.

The meanings of the various options are as follows:

1. --indir: path to the folder containing the files matrix.mtx, dictionary.txt, and documents.txt;
may be in small_data for example

2. --outdir: path to the folder to into which results should be written

3. --docs_per_term: any rows whose entries sum to less than this value will be pruned

4. --terms_per_doc: any columns whose entries sum to less than this value will be pruned

5. --maxiter: perform no more than this many iterations

6. --precision: the number of digits of precision with which to write the output matrix

7. --boolean_mode: all nonzero matrix elements will be treated as if they had the value 1.0. In other words,
the preprocessor will ignore the actual frequency counts and treat all nonzero entries as if they were 1.0.

6.2.4 Sample Runs

Here is a sample run of the preprocessor using the data provided in the smallk distribution. This run was performed
from the top-level smallk folder after building the code:

preprocessor/bin/preprocess_tf --indir data

Command line options:

indir: data/
outdir: current directory

docs_per_term: 3
terms_per_doc: 5

max_iter: 1000
precision: 4

boolean_mode: 0

Loading input matrix data/matrix.mtx
Input file load time: 1.176s.

Starting iterations...
[1] height: 39771, width: 11237, nonzeros: 877453

Iterations finished.
New height: 39727
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New width: 11237
New nonzero count: 877374
Processing time: 0.074s.

Writing output matrix reduced_matrix.mtx
Output file write time: 2.424s.
Writing dictionary file reduced_dictionary.txt
Writing documents file reduced_documents.txt
Dictionary + documents write time: 0.08s.

6.3 Matrixgen

6.3.1 Overview

The matrix generator application is a simple tool for generating simple matrices. These matrices can be loaded by the
NMF and clustering tools for various testing scenarios. Use of the matrix generator is entirely optional.

6.3.2 Command Line Options

Running the matrixgen binary with no options generates the following output:

matrixgen

Usage: matrixgen
--height <number of rows>
--width <number of cols>
--filename <path>
[--type UNIFORM] UNIFORM: matrix with uniformly-distributed random

→˓entries
DENSE_DIAG: dense diagonal matrix with uniform random entries
SPARSE_DIAG: sparse diagonal matrix with uniform random entries
IDENTITY: identity matrix
ONES: matrix of all ones
ZEROS: matrix of all zeros
SPARSE: sparse matrix with uniform random entries

specify 'nz_per_col' to control occupancy

[--rng_center 0.5] center of random numbers
[--rng_radius 0.5] radius of random numbers
[--precision 6] digits of precision
[--nz_per_col 1] (SPARSE only) nonzeros per column

The --height, --width, and --filename options are required. All others are optional and have the default
values indicated.

The meanings of the various options are as follows:

1. --height: number of rows in the generated matrix

2. --width: number of columns in the generated matrix

3. --filename: name of the output file

4. --type: the type of matrix to be generated; the default is a uniformly-distributed random matrix

5. --rng_center: random number distribution will be centered on this value

36 Chapter 6. Command Line Tools



SmallK: A Library for Nonnegative Matrix Factorization, Topic Modeling, and Clustering of
Large-Scale Data, Release 1.6.2

6. --rng_radius: random numbers will span this distance to either side of the center value

7. --precision: the number of digits of precision with which to write the output matrix

8. --nz_per_col: number of nonzero entries per sparse matrix column; valid only for SPARSE type

6.3.3 Sample Runs

Suppose we want to generate a matrix of uniformly-distributed random numbers. The matrix should have a height of
100 and a width of 16, and should be written to a file called w_init.csv. Use the matrix generator as follows:

matrixgen --height 100 --width 16 --filename w_init.csv

6.4 Nonnegative Matrix Factorization (NMF)

6.4.1 Overview

The NMF command line application performs nonnegative matrix factorization on dense or sparse matrices. If the
input matrix is denoted by A, nonnegative matrix factors Wand H are computed such that 𝐴 ∼= 𝑊𝐻 .

Matrix 𝐴 can be either dense or sparse; matrices 𝑊 and 𝐻 are always dense. Matrix 𝐴 has m rows and n columns;
matrix 𝑊 has m rows and k columns; matrix 𝐻 has k rows and n columns. Parameter k is a positive integer and is
typically much less than either m or n.

6.4.2 Command Line Options

Running the nmf application with no command line parameters will cause the application to display all params that it
supports. These are:

Usage: nmf
--matrixfile <filename> Filename of the matrix to be factored.

Either CSV format for dense or MatrixMarket format for
→˓sparse.
--k <integer value> Inner dimension for factors W and H.
[--algorithm BPP] NMF algorithms:

MU: multiplicative updating
HALS: hierarchical alternating least squares
RANK2: rank2 with optimal active set selection
BPP: block principal pivoting

[--stopping PG_RATIO] Stopping criterion:
PG_RATIO: Ratio of projected gradients
DELTA: Change in relative F-norm of W

[--tol 0.005] Tolerance for the selected stopping criterion.
[--tolcount 1] Tolerance count; declare convergence after this many

iterations with metric < tolerance; default is to
declare convergence on the first such iteration.

[--infile_W (empty)] Dense mxk matrix to initialize W; CSV file.
If unspecified, W will be randomly initialized.

[--infile_H (empty)] Dense kxn matrix to initialize H; CSV file.
If unspecified, H will be randomly initialized.

[--outfile_W w.csv] Filename for the W matrix result.
[--outfile_H h.csv] Filename for the H matrix result.
[--miniter 5] Minimum number of iterations to perform.
[--maxiter 5000] Maximum number of iterations to perform.

6.4. Nonnegative Matrix Factorization (NMF) 37



SmallK: A Library for Nonnegative Matrix Factorization, Topic Modeling, and Clustering of
Large-Scale Data, Release 1.6.2

[--outprecision 6] Write results with this many digits of precision.
[--maxthreads 8] Upper limit to thread count.
[--normalize 1] Whether to normalize W and scale H.

1 == yes, 0 == no
[--verbose 1] Whether to print updates to the screen.

1 == print updates, 0 == silent

The –matrixfile and –k options are required; all others are optional and have the default values indicated. The meanings
of the various options are as follows:

1. --matrixfile: Filename of the matrix to be factored. CSV files are supported for dense matrices and MTX
files for sparse matrices.

2. --k: the width of the W matrix (inner dimension of the matrix factors)

3. --algorithm: identifier for the factorization algorithm

4. --stopping: the method used to terminate the iterations; use PG_RATIO unless you have a specific reason
not to

5. --tol: tolerance value used to terminate iterations; when the progress metric falls below this value iterations
will stop; typical values are in the 1.0e-3 or 1.0e-4 range

6. --tolcount: a positive integer representing the number of successive iterations for which the progress metric
must have a value <= tolerance; default is 1, which means the iterations will terminate on the first iteration with:
progress_metric <= tolerance

7. --infile_W: CSV file containing the mxk initial values for matrix W; if omitted, W is randomly initialized

8. --infile_H: CSV file containing the kxn initial values for matrix H; if omitted, H is randomly initialized

9. --outfile_W: filename for the computed W factor; default is w.csv

10. --outfile_H: filename for the computed H factor; default is h.csv

11. --miniter: the minimum number of iterations to perform before checking progress; for smaller tolerance
values, you may want to increase this number to avoid needless progress checks

12. --maxiter: the maximum number of iterations to perform

13. --outprecision: matrices W and H will be written to disk using this many digits of precision

14. --maxthreads: the maximum number of threads to use; the default is to use as many threads as the hardware
can support (your number may differ from that shown)

15. --normalize: whether to normalize the columns of the W matrix and correspondingly scale the rows of H
after convergence

16. --verbose: whether to display updates to the screen as the iterations progress

6.4.3 Sample Runs

The smallk distribution utilizes another repository smallk_data45 (clone this repository from github) with a matrix file
reuters.mtx. This is a tf-idf weighted matrix derived from the popular Reuters data set used in machine learning
experiments.

Suppose we want to factor the Reuters matrix using a k value of 8. We would do that as follows, assuming that we are
in the top-level smallk folder after building the code and that the smallk_data repository was cloned into data:

45 https://github.com/smallk/smallk_data
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nmf/bin/nmf --matrixfile data/reuters.mtx --k 8

Note that if make install was run during installation and the $PATH variable or environment variable was set as
above, this could also be called with:

usr/local/bin/nmf --matrixfile data/reuters.mtx --k 8

If we want to instead use the HALS algorithm with k=16, a tolerance of 1.0e-4, and also perform 10 iterations prior to
checking progress, we would use this command line:

nmf/bin/nmf --matrixfile data/reuters.mtx --k 16 --algorithm HALS --tol 1.0e-4 --
→˓miniter 10

To repeat the previous experiment but with new names for the output files, we would do this:

nmf/bin/nmf --matrixfile data/reuters.mtx --k 16 --algorithm HALS --tol 1.0e-4
--miniter 10 --outfile_W w_hals.csv -outfile_H h_hals.csv

6.5 Hierclust

6.5.1 Overview

First, we briefly describe the algorithm and the references section provides pointers to papers with detailed descriptions
of the algorithms. NMF-RANK2 for hierarchical clustering generates a binary tree of items. We refer to a node in the
binary tree and the items associated with the node interchangeably. This method begins by placing all data items in the
root node. The number of leaf nodes to generate is specified (user input). The algorithm proceeds with the following
steps, repeated until the maximum number of leaf nodes, max_leaf_nodes, is reached:

1. Pick the leaf node with the highest score (at the very beginning where only a root node is present, just pick the
root node)

2. Apply NMF-RANK2 to the node selected in step 1, and generate two new leaf nodes

3. Compute a score for each of the two leaf nodes generated in step 2

4. Repeat until the desired number of leaf nodes has been generated

Step 2 implements the details of the node splitting into child nodes. Outlier detection plays a crucial role in hierarchical
clustering to generate a tree with well-balanced and meaningful clusters. To implement this, we have two additional
parameters in step 2: trial_allowance and unbalanced.

The parameter trial_allowance is the number of times that the program will try to split a node into two meaningful
clusters. In each trial, the program will check if one of the two generated leaf nodes is an outlier set. If the outlier set
is detected, the program will delete the items in the outlier set from the node being split and continue to the next trial.
If all the trials are finished and the program still cannot find two meaningful clusters for this node, all the deleted items
are “recycled” and placed into this node again, and this node will be labeled as a “permanent leaf node” that cannot be
picked in step 1 in later iterations.

The parameter unbalanced is a threshold parameter to determine whether two generated leaf nodes are unbalanced.
Suppose two potential leaf nodes L and R are generated from the selected node and L has fewer items than R. Let us
denote the number of items in a node N as |𝑁 |. L and R are called unbalanced if

|𝐿| < 𝑢𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 * (|𝐿|+ |𝑅|)
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Note that if L and R are unbalanced, the potential node L with fewer items is not necessarily regarded as an outlier set.
Please see the referenced paper for more details [3]46.

Internally, NMF-RANK2 is applied to each leaf node to compute the score in step 3. The computed result matrices W
and H in step 3 are cached so that we can avoid duplicate work in step 2 in later iterations.

The score for each leaf node is based on a modified version of the NDCG (Normalized Discounted Cumulative Gain)
measure, a common measure in the information retrieval community. A leaf node is associated with a “topic vector”,
and we can define “top terms” based on the topic vector. A leaf node will receive a high score if its top terms are a
good combination of the top terms of its two potential children; otherwise it receives a low score.

The hierclust application generates two output files. One file contains the assignments of documents to clusters. This
file contains one integer for each document (column) of the original matrix. The integers are the cluster labels for that
cluster that the document was assigned to. If the document could not be assigned to a cluster, a -1 will be entered into
the file, indicating that the document is an outlier.

The other output file contains information for each node in the factorization binary tree. The items in this file are:

1. id: a unique id for this node

2. level: the level in the tree at which this node appears; the root is at level 0, the children of the root are at level
1, etc.

3. label: the cluster label for this node (meaningful only for leaf nodes)

4. parent_id: the unique id of the parent of this node (the root node has parent_id == 0)

5. parent_label: the cluster label of the parent of this node

6. left_child: a Boolean value indicating whether this node is the left or right child of its parent

7. left_child_label: the cluster label of the left child of this node (leaf nodes have -1 for this value)

8. right_child_label: the cluster label of the right child of this node (leaf nodes have -1 for this value)

9. doc_count: the number of documents that this node represents

10. top_terms: the highest probability dictionary terms for this node

The node id values and the left or right child indicators can be used to unambiguously reconstruct the factorization
tree.

6.5.2 Command Line Options

Running the hierclust application with no command line parameters will cause the application to display all params
that it supports. These are:

Usage: hierclust/bin/hierclust
--matrixfile <filename> Filename of the matrix to be factored.

Either CSV format for dense or MatrixMarket format for
→˓sparse.
--dictfile <filename> The name of the dictionary file.
--clusters <integer> The number of clusters to generate.
[--initdir (empty)] Directory of initializers for all Rank2 factorizations.

If unspecified, random init will be used.
[--tol 0.0001] Tolerance value for each factorization.
[--outdir (empty)] Output directory. If unspecified, results will be

written to the current directory.
[--miniter 5] Minimum number of iterations to perform.
[--maxiter 5000] Maximum number of iterations to perform.

46 http://smallk.github.io/publications/

40 Chapter 6. Command Line Tools

http://smallk.github.io/publications/


SmallK: A Library for Nonnegative Matrix Factorization, Topic Modeling, and Clustering of
Large-Scale Data, Release 1.6.2

[--maxterms 5] Number of terms per node.
[--maxthreads 8] Upper limit to thread count.
[--unbalanced 0.1] Threshold for determining leaf node imbalance.
[--trial_allowance 3] Number of split attempts.
[--flat 0] Whether to generate a flat clustering result.

1 == yes, 0 == no
[--verbose 1] Whether to print updates to the screen.

1 == yes, 0 == no
[--format XML] Format of the output file containing the tree.

XML: XML format
JSON: JavaScript Object Notation

[--treefile tree_N.ext] Name of the output file containing the tree.
N is the number of clusters for this run.
The string 'ext' depends on the desired format.
This filename is relative to the outdir.

[--assignfile assignments_N.csv] Name of the file containing final assignments.
N is the number of clusters for this run.
This filename is relative to the outdir.

The --matrixfile, --dictfile, and --clusters options are required; all others are optional and have the
default values indicated. The meanings of the various options are as follows:

1. --matrixfile: Filename of the matrix to be factored. CSV files are supported for dense matrices and MTX
files for sparse matrices.

2. --dictfile: absolute or relative path to the dictionary file

3. --clusters: the number of leaf nodes (clusters) to generate

4. --initdir: Initializer matrices for W and H are loaded from the initdir directory. The matrices are assumed
to have the names Winit_1.csv, Hinit_1.csv, Winit_2.csv, Hinit_2.csv, etc. It is up to the user
to ensure that enough matrices are present in this dir to run the HierNMF2 code to completion. The number
of matrices used is non-deterministic, so trial-and-error may be required to find a lower bound on the matrix
count. This feature is used for testing (such as comparisons with Matlab), in which each factorization problem
has to proceed from a known initializer. The W initializer matrices must be of shape m x 2, and the H initializer
matrices must be of shape 2 x n.

5. --tol: tolerance value for each internal NMF-RANK2 factorization; the stopping criterion is the ratio of
projected gradient method

6. --outdir: path to the folder into which to write the output files; if omitted results will be written to the current
directory

7. --miniter: minimum number of iterations to perform before checking progress on each NMF-RANK2 fac-
torization

8. --maxiter: the maximum number of iterations to perform on each NMF-RANK2 factorization

9. --maxterms: the number of dictionary keywords to include in each node

10. --maxthreads: the maximum number of threads to use; the default is to use as many threads as the hardware
can support (your number may differ from that shown)

11. --unbalanced: threshold value for declaring leaf node imbalance (see explanation above)

12. --trial_allowance: maximum number of split attempts for any node (see explanation above)

13. --flat: whether to generate a flat clustering result in addition to the hierarchical clustering result

14. --verbose: whether to display updates to the screen as the iterations progress

15. --format: file format to use for the clustering results
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16. --treefile: name of the output file for the factorization tree; uses the format specified by the format param-
eter

17. --assignfile: name of the output file for the cluster assignments

6.5.3 Sample Runs

The smallk distribution has available a smallk_data repository on github with a matrix file reuters.mtx and
an associated dictionary file reuters_dictionary.txt. These files are derived from the popular Reuters data
set used in machine learning experiments.

As above, it is assumed that the smallk_data47 repository was cloned into data and that the commands can be run as
below or from /usr/local/bin.

Suppose we want to perform hierarchical clustering on this data set and generate 10 leaf nodes. We would do that as
follows, assuming that we are in the top-level smallk folder after building the code:

hierclust/bin/hierclust --matrixfile data/reuters.mtx --dictfile data/reuters_
→˓dictionary.txt --clusters 10

This will generate two result files in the current directory: tree_10.xml and assignments_10.csv.

If we want to instead generate 10 clusters, each with 8 terms, using JSON output format, we would use this command
line:

hierclust/bin/hierclust --matrixfile data/reuters.mtx --dictfile data/reuters_
→˓dictionary.txt --clusters 10 --maxterms 8 --format JSON

Two files will be generated: tree_10.json and assignments_10.csv. The json file will have 8 keywords per
node, whereas the tree_10.xml file will have only 5.

To generate a flat clustering result (in addition to the hierarchical clustering result), use this command line:

hierclust/bin/hierclust --matrixfile data/reuters.mtx --dictfile data/reuters_
→˓dictionary.txt --clusters 10 --maxterms 8 --format JSON --flat 1

Two additional files will be generated this time (along with tree_10.json and assignments_10.csv):
clusters_10.json, which contains the flat clustering results, and assignments_flat_10.csv, which con-
tains the flat clustering assignments.

6.6 Flatclust

6.6.1 Overview

The flatclust command line application factors the input matrix using either NMF-HALS or NMF-BPP and generates
a flat clustering result. A flatclust run generating k clusters will generally run more slowly than a hierclust run, of the
same number of clusters, with the –flat option enabled. The reason for this is that the hierclust application uses the
NMF-RANK2 algorithm and always generates factor matrices with two rows or columns. The runtime of NMF scales
superlinearly with k in this case, and thus runs fastest for the smallest k value.

The flatclust application generates two output files. The first file contains the assignments of documents to clusters
and is interpreted identically to that of the hierclust application, with the exception that there are no outliers generated
by flatclust.

47 https://github.com/smallk/smallk_data
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The second file contains the node information. This file is much simpler than that of the hierclust application since
there is no factorization tree. The items for each node in this file are:

1. id: the unique id of this node

2. doc_count: the number of documents assigned to this node

3. top_terms: the highest probability dictionary terms assigned to this node

6.6.2 Command Line Options

Running the flatclust application with no command line parameters will cause the application to display all params
that it supports. These are:

Usage: flatclust
--matrixfile <filename> Filename of the matrix to be factored.

Either CSV format for dense or MatrixMarket format for
→˓sparse.
--dictfile <filename> The name of the dictionary file.
--clusters <integer> The number of clusters to generate.
[--algorithm BPP] The NMF algorithm to use:

HALS: hierarchical alternating least squares
RANK2: rank2 with optimal active set selection

(for two clusters only)
BPP: block principal pivoting

[--infile_W (empty)] Dense matrix to initialize W, CSV file.
The matrix has m rows and 'clusters' columns.
If unspecified, W will be randomly initialized.

[--infile_H (empty)] Dense matrix to initialize H, CSV file.
The matrix has 'clusters' rows and n columns.
If unspecified, H will be randomly initialized.

[--tol 0.0001] Tolerance value for the progress metric.
[--outdir (empty)] Output directory. If unspecified, results will be

written to the current directory.
[--miniter 5] Minimum number of iterations to perform.
[--maxiter 5000] Maximum number of iterations to perform.
[--maxterms 5] Number of terms per node.
[--maxthreads 8] Upper limit to thread count.
[--verbose 1] Whether to print updates to the screen.

1 == yes, 0 == no
[--format XML] Format of the output file containing the tree.

XML: XML format
JSON: JavaScript Object Notation

[--clustfile clusters_N.ext] Name of the output XML file containing the tree.
N is the number of clusters for this run.
The string 'ext' depends on the desired format.
This filename is relative to the outdir.

[--assignfile assignments_N.csv] Name of the file containing final assignments.
N is the number of clusters for this run.
This filename is relative to the outdir.

The --matrixfile, --dictfile, and --clusters options are required; all others are optional and have the
default values indicated. The meanings of the various options are as follows:

1. --matrixfile: Filename of the matrix to be factored. CSV files are supported for dense matrices and MTX
(matrix market) files for sparse matrices.

2. --dictfile: absolute or relative path to the dictionary file
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3. --clusters: the number of clusters to generate (equivalent to the NMF k value)

4. --algorithm: the factorization algorithm to use

5. --infile_W: CSV file containing the m x clusters initial values for matrix W; if omitted, W is randomly
initialized

6. --infile_H: CSV file containing the clusters x n initial values for matrix H; if omitted, H is randomly
initialized

7. --tol: tolerance value for the factorization; the stopping criterion is the ratio of projected gradient method

8. --outdir: path to the folder into which to write the output files; if omitted results will be written to the current
directory

9. --miniter: minimum number of iterations to perform before checking progress

10. --maxiter: the maximum number of iterations to perform

11. --maxterms: the number of dictionary keywords to include in each node

12. --maxthreads: the maximum number of threads to use; the default is to use as many threads as the hardware
can support (your number may differ from that shown)

13. --verbose: whether to display updates to the screen as the iterations progress

14. --format: file format to use for the clustering results

15. --clustfile: name of the output file for the nodes; uses the format specified by the format parameter

16. --assignfile: name of the output file for the cluster assignments

6.6.3 Sample Runs

The smallk distribution has available a smallk_data repository on github with a matrix file reuters.mtx and
an associated dictionary file reuters_dictionary.txt. These files are derived from the popular Reuters data
set used in machine learning experiments.

As above, it is assumed that the smallk_data48 repository was cloned into data and that the commands can be run as
below or from /usr/local/bin.

Suppose we want to perform flat clustering on this data set and generate 10 clusters. We would do that as follows,
assuming that we are in the top-level smallk folder after building the code:

flatclust/bin/flatclust --matrixfile data/reuters.mtx --dictfile data/reuters_
→˓dictionary.txt --clusters 10

This will generate two result files in the current directory: clusters_10.xml and assignments_10.csv.

If we want to instead generate 10 clusters, each with 8 terms, using JSON output format, we would use this command
line:

flatclust/bin/flatclust --matrixfile data/reuters.mtx --dictfile data/reuters_
→˓dictionary.txt --clusters 10 --maxterms 8 --format JSON

Two files will be generated: clusters_10.json and assignments_10.csv. The json file will have 8 key-
words per node, whereas the clusters_10.xml file will have only 5.

48 https://github.com/smallk/smallk_data
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CHAPTER

SEVEN

SMALLK API (C++)

7.1 Examples of API Usage

In the examples folder you will find a file called smallk_example.cpp. This file contains several examples of
how to use the SmallK library. Also included in the examples folder is a makefile that you can customize for your use.
Note that the SmallK library must first be installed before the example project can be built.

As an example of how to use the sample project, assume the smallk software has been installed into /
usr/local/smallk. Also assume that the user chose to create the recommended environment variable
SMALLK_INSTALL_DIR that stores the location of the top-level install folder, i.e. the user’s .bashrc file con-
tains this statement:

export SMALLK_INSTALL_DIR=/usr/local/smallk

To build the smallk example project, open a terminal window and cd to the smallk/examples folder and run this
command:

make

To run the example project, run this command:

./bin/example ../../smallk_data

Note: the output will be similar to the following not identical since some problems are randomly initialized:

Smallk major version: 1
Smallk minor version: 0
Smallk patch level: 0
Smallk version string: 1.0.0
Loading matrix...

************************************************************
* *
* Running NMF-BPP using k=32 *
* *
************************************************************
Initializing matrix W...
Initializing matrix H...

parameters:

algorithm: Nonnegative Least Squares with Block Principal Pivoting
stopping criterion: Ratio of Projected Gradients

height: 12411
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width: 7984
k: 32

miniter: 5
maxiter: 5000

tol: 0.005
matrixfile: ../data/reuters.mtx
maxthreads: 8

1: progress metric: (min_iter)
2: progress metric: (min_iter)
3: progress metric: (min_iter)
4: progress metric: (min_iter)
5: progress metric: (min_iter)
6: progress metric: 0.0747031
7: progress metric: 0.0597987
8: progress metric: 0.0462878
9: progress metric: 0.0362883
10: progress metric: 0.030665
11: progress metric: 0.0281802
12: progress metric: 0.0267987
13: progress metric: 0.0236731
14: progress metric: 0.0220778
15: progress metric: 0.0227083
16: progress metric: 0.0244029
17: progress metric: 0.0247552
18: progress metric: 0.0220007
19: progress metric: 0.0173831
20: progress metric: 0.0137033

Solution converged after 39 iterations.

Elapsed wall clock time: 4.354 sec.

Writing output files...

************************************************************
* *
* Running NMF-HALS using k=16 *
* *
************************************************************
Initializing matrix W...
Initializing matrix H...

parameters:

algorithm: HALS
stopping criterion: Ratio of Projected Gradients

height: 12411
width: 7984

k: 16
miniter: 5
maxiter: 5000

tol: 0.005
matrixfile: ../data/reuters.mtx
maxthreads: 8

1: progress metric: (min_iter)
2: progress metric: (min_iter)
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3: progress metric: (min_iter)
4: progress metric: (min_iter)
5: progress metric: (min_iter)
6: progress metric: 0.710219
7: progress metric: 0.580951
8: progress metric: 0.471557
9: progress metric: 0.491855
10: progress metric: 0.531999
11: progress metric: 0.353302
12: progress metric: 0.201634
13: progress metric: 0.1584
14: progress metric: 0.142572
15: progress metric: 0.12588
16: progress metric: 0.113239
17: progress metric: 0.0976934
18: progress metric: 0.0821207
19: progress metric: 0.0746089
20: progress metric: 0.0720616
40: progress metric: 0.0252854
60: progress metric: 0.0142085
80: progress metric: 0.0153269

Solution converged after 88 iterations.

Elapsed wall clock time: 1.560 sec.

Writing output files...

************************************************************
* *
* Running NMF-RANK2 with W and H initializers *
* *
************************************************************
Initializing matrix W...
Initializing matrix H...

parameters:

algorithm: Rank 2
stopping criterion: Ratio of Projected Gradients

height: 12411
width: 7984

k: 2
miniter: 5
maxiter: 5000

tol: 0.005
matrixfile: ../data/reuters.mtx
maxthreads: 8

1: progress metric: (min_iter)
2: progress metric: (min_iter)
3: progress metric: (min_iter)
4: progress metric: (min_iter)
5: progress metric: (min_iter)
6: progress metric: 0.0374741
7: progress metric: 0.0252389
8: progress metric: 0.0169805
9: progress metric: 0.0113837
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10: progress metric: 0.00761077
11: progress metric: 0.0050782
12: progress metric: 0.00338569

Solution converged after 12 iterations.

Elapsed wall clock time: 0.028 sec.

Writing output files...

************************************************************
* *
* Repeating the previous run with tol = 1.0e-5 *
* *
************************************************************
Initializing matrix W...
Initializing matrix H...

parameters:

algorithm: Rank 2
stopping criterion: Ratio of Projected Gradients

height: 12411
width: 7984

k: 2
miniter: 5
maxiter: 5000

tol: 1e-05
matrixfile: ../data/reuters.mtx
maxthreads: 8

1: progress metric: (min_iter)
2: progress metric: (min_iter)
3: progress metric: (min_iter)
4: progress metric: (min_iter)
5: progress metric: (min_iter)
6: progress metric: 0.0374741
7: progress metric: 0.0252389
8: progress metric: 0.0169805
9: progress metric: 0.0113837
10: progress metric: 0.00761077
11: progress metric: 0.0050782
12: progress metric: 0.00338569
13: progress metric: 0.00225761
14: progress metric: 0.00150429
15: progress metric: 0.00100167
16: progress metric: 0.000666691
17: progress metric: 0.000443654
18: progress metric: 0.000295213
19: progress metric: 0.000196411
20: progress metric: 0.000130604

Solution converged after 27 iterations.

Elapsed wall clock time: 0.061 sec.

Writing output files...
Minimum value in W matrix: 0.
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Maximum value in W matrix: 0.397027.

************************************************************
* *
* Running HierNMF2 with 5 clusters, JSON format *
* *
************************************************************
loading dictionary...
creating random W initializers...
creating random H initializers...

parameters:

height: 12411
width: 7984

matrixfile: ../data/reuters.mtx
dictfile: ../data/reuters_dictionary.txt

tol: 0.0001
miniter: 5
maxiter: 5000

maxterms: 5
maxthreads: 8

[1] [2] [3] [4]

Elapsed wall clock time: 391 ms.
9/9 factorizations converged.

Writing output files...

************************************************************
* *
* Running HierNMF2 with 10 clusters, 12 terms, XML format *
* *
************************************************************
creating random W initializers...
creating random H initializers...

parameters:

height: 12411
width: 7984

matrixfile: ../data/reuters.mtx
dictfile: ../data/reuters_dictionary.txt

tol: 0.0001
miniter: 5
maxiter: 5000

maxterms: 12
maxthreads: 8

[1] [2] [3] [4] [5] [6] dropping 20 items ...
[7] [8] [9]

Elapsed wall clock time: 837 ms.
21/21 factorizations converged.

Writing output files...

************************************************************
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* *
* Running HierNmf2 with 18 clusters, 8 terms, with flat *
* *
************************************************************
creating random W initializers...
creating random H initializers...

parameters:

height: 12411
width: 7984

matrixfile: ../data/reuters.mtx
dictfile: ../data/reuters_dictionary.txt

tol: 0.0001
miniter: 5
maxiter: 5000

maxterms: 8
maxthreads: 8

[1] [2] [3] [4] [5] [6] dropping 20 items ...
[7] [8] [9] dropping 25 items ...
[10] [11] [12] [13] [14] [15] [16] [17]

Running NNLS solver...
1: progress metric: 1
2: progress metric: 0.264152
3: progress metric: 0.0760648
4: progress metric: 0.0226758
5: progress metric: 0.00743562
6: progress metric: 0.00280826
7: progress metric: 0.00103682
8: progress metric: 0.000361738
9: progress metric: 0.000133087
10: progress metric: 5.84849e-05

Elapsed wall clock time: 1.362 s.
40/40 factorizations converged.

Writing output files...

The output files are written to the default directory or the directory specified on the command line.

7.2 SmallK API

The SmallK API is an extremely simplistic API for basic NMF and clustering. Users who require more control over the
factorization or clustering algorithms can instead run one of the command-line applications in the SmallK distribution.

The SmallK API is exposed by the file smallk.hpp, which can be found in this location:

SMALLK_INSTALL_DIR/include/smallk.hpp.

All API functions are contained within the smallk namespace.

An example of how to use the API can be found in the file examples/smallk_example.cpp.

The smallk library maintains a set of state variables that are used to control the Nmf and clustering routines. Once set,
the state variables maintain their values until changed by an API function. For instance, one state variable represents
the matrix to be factored (or used for clustering). The API provides a function to load this matrix; once loaded, it
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can be repeatedly factored without the need for reloading. The state variables and their default values are documented
below.

All computations with the smallk library are performed in double precision.

7.2.1 Enumerations

The SmallK API provides two enumerated types, one for the supported NMF algorithms and one for the clustering file
output format. These are:

enum Algorithm
{

MU, // Multiplicative Updating, Lee & Seung
BPP, // Block Principal Pivoting, Kim and Park
HALS, // Hierarchical Alternating Least Squares, Cichocki & Pan
RANK2 // Rank2, Kuang and Park

};

The default NMF algorithm is BPP. The Rank2 algorithm is optimized for two-column or two-row matrices and is the
underlying factorization routine for the clustering code.

enum OutputFormat
{

XML, // Extensible Markup Language
JSON // JavaScript Object Notation

};

7.2.2 API functions

7.2.2.1 Initialization and cleanup

void Initialize(int& argc, char**& argv)

Call this function first, before all others in the API; initializes Elemental and the smallk library.

bool IsInitialized()

Returns true if the library has been initialized via a call to Initialize(), false otherwise.

Call this function last, after all others in the API; performs cleanup for Elemental and the smallk library:

void Finalize()

7.2.2.2 Versioning

unsigned int GetMajorVersion()

Returns the major release version number of the library as an unsigned integer.

unsigned int GetMinorVersion()

Returns the minor release version number of the library as an unsigned integer.
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unsigned int GetPatchLevel()

Returns the patch version number of the library as an unsigned integer.

std::string GetVersionString()

Returns the version of the library as a string, formatted as major.minor.patch.

7.2.2.3 Common functions

unsigned int GetOutputPrecision()

Returns the floating point precision with which numerical output will be written (i.e., the computed W and H matrix
factors from the Nmf routine). The default precision is six digits.

void SetOutputPrecision(const unsigned int num_digits)

Sets the floating point precision with which numerical output will be written. Input values should be within the range
[1, precision(double)]. Any inputs outside of this range will be adjusted.

unsigned int GetMaxIter()

Returns the maximum number of iterations allowed for NMF computations. The default value is 5000.

void SetMaxIter(const unsigned int max_iterations = 5000)

Sets the maximum number of iterations allowed for NMF computations. The default of 5000 should be more than
sufficient for most computations.

unsigned int GetMinIter()

Returns the minimum number of NMF iterations. The default value is 5.

void SetMinIter(const unsigned int min_iterations = 5)

Sets the minimum number of NMF iterations to perform before checking for convergence. The convergence and
progress estimation routines are non-trivial calculations, so increasing this value may result in faster performance.

unsigned int GetMaxThreads()

Returns the maximum number of threads used for NMF or clustering computations. The default value is hardware-
dependent, but is generally the maximum number allowed by the hardware.

void SetMaxThreads(const unsigned int max_threads);

Sets an upper limit to the number of threads used for NMF and clustering computations. Inputs that exceed the
capabilities of the hardware will be adjusted. This function is provided for scaling and performance studies.

void Reset()

Resets all state variables to their default values.

void SeedRNG(const int seed)
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Seeds the random number generator (RNG) within the smallk library. Normally this RNG is seeded from the system
time whenever the library is initialized. The RNG is the 19937 Mersenne Twister implementation provided by the
C++ standard library.

void LoadMatrix(const std::string& filepath)

Loads a matrix contained in the given file. The file must either be a comma-separated value (.CSV) file for a dense
matrix, or a MatrixMarket-format file (.MTX) for a sparse matrix. If the matrix cannot be loaded the library throws a
std::runtime_error exception.

bool IsMatrixLoaded()

Returns true if a matrix is currently loaded, false if not.

std::string GetOuputDir()

Returns a string indicating the directory into which output files will be written. The default is the current directory.

void SetOutputDir(const std::string& outdir)

Sets the directory into which output files should be written. The outdir argument can either be an absolute or relative
path. The default is the current directory.

7.2.2.4 NMF functions

void Nmf(const unsigned int k,
const Algorithm algorithm = Algorithm::BPP,
const std::string& initfile_w = std::string(""),
const std::string& initfile_h = std::string(""))

This function factors the input matrix A of nonnegative elements into nonnegative factors such that: 𝐴 ∼= 𝑊𝐻 . If a
matrix is not currently loaded a std::logic_error exception will be thrown. The default algorithm is NMF-BPP; provide
one of the enumerated algorithm values to use a different algorithm.

Where A is mxn, W is mxk, and H is kxn. The value of k a user defined argument, e.g., for clustering applications, k
is the number of clusters.

Optional initializer matrices can be provided for the W and H factors via the initfile_w and initfile_h argu-
ments. These files must contain fully dense matrices in .CSV format. The W matrix initializer must have dimension
mxk, and the H matrix initializer must have dimension kxn. If the initializer matrices do not match these dimensions
exactly a std::logic_error exception is thrown. If initializers are not provided, matrices W and H will be randomly
initialized.

The computed factors W and H will be written to the output directory in the files w.csv and h.csv.

Exceptions will be thrown (either from Elemental or smallk) in case of error.

const double* LockedBufferW(unsigned int& ldim, unsigned int& height, unsigned int&
→˓width)

This function returns a READONLY pointer to the buffer containing the W factor computed by the Nmf routine, along
with buffer and matrix dimensions. The ldim, height, and width arguments are all out parameters. The buffer
has a height of ldim and a width of width. The matrix W has the same width but a height of height, which may
differ from ldim. The W matrix is stored in the buffer in column-major order. See the examples/smallk_example.cpp
file for an illustration of how to use this function.
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const double* LockedBufferH(unsigned int& ldim, unsigned int& height, unsigned int&
→˓width)

Same as LockedBufferW, but for the H matrix.

double GetNmfTolerance()

Returns the tolerance value used to determine NMF convergence. The default value is 0.005.

void SetNmfTolerance(const double tol=0.005)

Sets the tolerance value used to determine NMF convergence. The NMF algorithms are iterative, and at each iteration
a progress metric is computed and compared with the tolerance value. When the metric falls below the tolerance value
the iterations stop and convergence is declared. The tolerance value should satisfy 0.0 < tolerance < 1.0. Any inputs
outside this range will cause a std::logic_error exception to be thrown. Clustering Functions

void LoadDictionary(const std::string& filepath)

Loads the dictionary used for clustering. The dictionary is an ASCII file of text strings as described in the preprocessor
input files section below. If the dictionary file cannot be loaded a std::runtime_error exception is thrown.

unsigned int GetMaxTerms()

Returns the number of highest-probability dictionary terms to store per cluster. The default value is 5.

void SetMaxTerms(const unsigned int max_terms = 5)

Sets the number of highest-probability dictionary terms to store per cluster.

OutputFormat GetOutputFormat()

Returns a member of the OutputFormat enumerated type; this is the file format for the clustering results. The default
output format is JSON.

void SetOutputFormat(const OutputFormat = OutputFormat::JSON)

Sets the output format for the clustering result file. The argument must be one of the values in the OutputFormat
enumerated type.

double GetHierNmf2Tolerance()

Returns the tolerance value used by the NMF-RANK2 algorithm for hierarchical clustering. The default value is
1.0e-4.

void SetHierNmf2Tolerance(const double tol=1.0e-4)

Sets the tolerance value used by the NMF-RANK2 algorithm for hierarchical clustering. The tolerance value should
satisfy 0.0 < tolerance < 1.0. Any inputs outside this range will cause a std::logic_error exception to be
thrown.

void HierNmf2(const unsigned int num_clusters)

This function performs hierarchical clustering on the loaded matrix, generating the number of clusters specified by the
num_clusters argument. For an overview of the hierarchical clustering process, see the description below for the
hierclust command line application.
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This function generates two output files in the output directory: assignments_N.csv and tree_N.{json, xml}. Here N is
the number of clusters specified as an argument, and the tree file can be in either JSON XML format.

The content of the files is described below in the section on the hierclust command line application.

void HierNmf2WithFlat(const unsigned int num_clusters)

This function performs hierarchical clustering on the loaded matrix, exactly as described for HierNmf2. In addi-
tion, it also computes a flat clustering result. Thus four output files are generated. The flat clustering result files
are assignments_flat_N.csv and clusters_N.{json, xml}. The cluster file contents are documented
below in the section on the flatclust command line application.
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EIGHT

PYSMALLK API (PYTHON)

8.1 Introduction

Why Python? Although it’s perfectly fine to run SmallK from the command line, Python provides a great deal more
flexibility that augments the C++ code with other tasks that are much more easily accomplished with a very high level
language. Python distributions can be easily extended with open source libraries from third party sources as well, two
examples being numpy and scipy, well-known standards for scientific computing in the Python community. There
are numerous packages available that extend these scientific libraries into the data analytics domain as well, such as
scikit-learn49.

For using scientific Python, we strongly recommend the Anaconda Python distribution provided by Continuum Ana-
lytics50. Download and installation instructions for all platforms can be found here51. Anaconda includes many if not
most of the commonly used scientific and data analytics packages available and a very easy to use package manager
and updating system. After installing Anaconda there will be available at the command line both a standard Python
interpreter (type python) and an iPython interpreter (type ipython). We recommend using the iPython interpreter.
In addition to the command line interfaces to Python, Anaconda includes the Spyder visual development environment
featuring a very well thought out interface that makes developing Python code almost “too easy”. Spyder has many
features found in the Matlab™ editor and a similar look and feel.

Anaconda also includes the Cython package, which is used by SmallK to integrate the Python and C++ code. Cython52

includes support for most of the C++ standard and supports the latest GNU C++ compilers. Most if not all the standard
libraries are supported and the latest version (20.2) has support for the standard template library (STL) as well.

8.2 Examples of Pysmallk Usage

Pysmallk has five classes, each of which represents one of the SmallK tools: SmallkAPI (the simplistic Smallk API),
Flatclust, Hierclust, Matrixgen, and Preprocessor. These tools can be strung together into various kind of applications.
Examples of such applications can be found in examples/pysmallk_example.py and in the pysmallk/
tests/ subdirectory.

The smallk_data repository contains several files (articles_matrix.mtx, articles_documents.txt,
articles_dictionary.txt) that contain the matrix and associated text files created from 2,424 news articles.

First, we will need to import numpy and the shared libary:

import numpy as np
import pysmallk

49 http://scikit-learn.org/stable/index.html
50 http://continuum.io/
51 https://store.continuum.io/cshop/anaconda/
52 http://cython.org/
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We then should apply the preprocessor to our data:

p = pysmallk.Preprocessor()
p.load_matrix(filepath='smallk_data/articles_matrix.mtx')
p.load_dictionary(filepath='smallk_data/articles_dictionary.txt')
p.load_documents(filepath='smallk_data/articles_documents.txt')

We will begin with the default inputs and run preprocess:

p.preprocess()

Instead of writing the results to files, we can get the outputs from the Preprocessor class and pass them directly as
inputs to the SmallkAPI class.:

reduced_docs = p.get_reduced_documents()
reduced_dict = p.get_reduced_dictionary()
reduced_scores = p.get_reduced_scores()
reduced_row_indices = p.get_reduced_row_indices()
reduced_col_offsets = p.get_reduced_col_offsets()
reduced_height = len(reduced_dict)
reduced_width = len(reduced_docs)

Now let’s instantiate the SmallkAPI object that we will use to do further computations.:

sk = pysmallk.SmallkAPI()

One of the options for matrix loading is to pass in the appropriate fields for a sparse matrix, as so:

sk.load_matrix(buffer=reduced_scores, row_indices=reduced_row_indices, col_
→˓offsets=reduced_col_offsets, height=reduced_height, width=reduced_width,
→˓nz=len(reduced_scores))

The input matrix alone is sufficient to run NMF and compute the factor matricies.

sk.nmf(5, 'BPP')

This will compute the W and H factor matrices and subsequently write them to the files w.csv and h.csv, respectively.

We can continue with further calcuations using the same input matrix. For example, we can extract topic models from
the input matrix if we also provide a dictionary.

sk.load_dictionary(dictionary=reduced_dict)
sk.hiernmf2(5)

This will use Hierarchical NMF to determine the final leaf nodes to use for the topic models and will output assign-
ments_5.csv (cluster labels) and tree_5.xml.

Now let’s say we want to create our own random matrix and pass that as a numpy matrix into SmallK.

a = np.random.random((256, 256))

In order to run the Hierclust or Flatclust applications, we will need to provide a dictionary file from which to select
the top terms.

pathtodict = args.indir + 'reuters_dictionary.txt'
with open(pathtodict) as dictionary:
terms = dictionary.read().split("\n")

For illustration, let’s use the Flatclust object and extract the resulting assignments from running NMF.
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f = pysmallk.Flatclust()

f.load_matrix(matrix=a)
f.load_dictionary(dictionary=terms)
f.cluster(16, algorithm='HALS')
a = f.get_assignments()

Now the variable ‘a’ holds a list of the computed assignment labels for each of the 256 elements in our original matrix.

When we are finished, we should clean up the environment before exiting:

sk.finalize()
f.finalize()

8.3 Pysmallk Functions

Pysmallk has five classes, each of which represents one of the SmallK tools: SmallkAPI (the simplistic Smallk API),
Flatclust, Hierclust, Matrixgen, and Preprocessor. Each of these classes can be imported as follows:

from pysmallk import SmallkAPI
from pysmallk import Flatclust
from pysmallk import Hierclust
from pysmallk import Matrixgen
from pysmallk import Preprocessor

Each class’s primary functions are documented in the sections below. The parameters are either marked [in] or [kwarg]
which represent, respectively, positional and keyword arguments.

8.3.1 Preprocessor

def parser()

Returns the parsed arguments for the default command line application. The command line arguments are the same as
those for the C++ binary application preprocessor.

def load_matrix(filepath="", height=0, width=0, nz=0, buffer=[], row_indices=[], col_
→˓offsets=[])

Load an input matrix.

1. To load a matrix from a file:

* filepath: The path to the input matrix

2. To load a sparse matrix from Matrixgen:

* height: The height of the sparse matrix

* width: The width of the sparse matrix

* sparse_matrix: The sparse matrix returned from Matrixgen

3. To load a sparse matrix from python:
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* height: The height of the sparse matrix

* width: The width of the sparse matrix

* nz: The number of non-zeros in the sparse matrix

* buffer: List of doubles containing the non-zero elements of the sparse matrix

* row_indices: List of integers representing the row indices of the sparse matrix

* col_offsets: List of integers representing the column offsets of the sparse matrix

def load_dictionary(filepath=None, dictionary=None)

Loads a dictionary from either a filepath or a list of dictionary strings.

def load_documents(filepath=None, documents=None)

Loads a documents from either a filepath or a list of document strings.

def get_reduced_documents()

Returns the reduced documents.

def get_reduced_dictionary()

Returns the reduced dictionary.

def get_reduced_scores()

Returns the non-zero scores from the reduced matrix.

def get_reduced_row_indices ()

Returns the row indices for the reduced matrix.

def get_reduced_col_offsets ()

Returns the column offsets for the reduced matrix.

def get_reduced_field (filepath="", values=[])

Loads a field from either a filepath or a list of field strings. Returns the reduced fields.

def preprocess(maxiter=1000, docsperterm=3,termsperdoc=5, boolean_mode=0)

Preprocesses the matrix.

• maxiter: The maximum number of iterations (optional)

• docsperterm: The number of documents required per term (optional)

• termsperdoc: The number of terms requried per document (optional)

• boolean_mode: All nonzero matrix elements will be treated as if they had the value 1.0 (optional)

def write_output(matrix_filepath, dict_filepath, docs_filepath, precision=4)

Writes the preprocessor results to files.

• matrix_filepath: The filepath for writing the matrix

• dict_filepath: The filepath for writing the dictionary

• docs_filepath: The filepath for the documents
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• precision: The precision with which to write the outputs (optional)

8.3.2 Matrixgen

def parser()

Returns the parsed arguments for the default command line application. The command line arguments are the same as
those for the C++ binary application matrixgen.

def uniform(m, n, center=0.5, radius=0.5)

Generates a uniform matrix. Returns a tuple of the list of values, the height, and the width.

• m: The desired height

• n: The desired width

• center: Center with which to initialize the RNG

• radius: Radius with which to initialize the RNG

def densediag(m, n, center=0.5, radius=0.5)

Generates a dense diagonal matrix. Returns a tuple of the list of values, the height, and the width.

• m: The desired height

• n: The desired width

• center: Center with which to initialize the RNG

• radius: Radius with which to initialize the RNG

def identify(m, n)

Generates an identify matrix. Returns a tuple of the list of values, the height, and the width.

• m: The desired height

• n: The desired width

def sparsediag(n, center=0.5, radius=0.5)

Generates a sparse diagonal matrix. Returns a tuple of the list of values, the height, and the width.

• n: The desired width

• center: Center with which to initialize the RNG

• radius: Radius with which to initialize the RNG

def ones(m, n)

Generates a matrix of ones. Returns a tuple of the list of values, the height, and the width.

• m: The desired height

• n: The desired width

def zeros(m, n)

Generates a matrix of zeros. Returns a tuple of the list of values, the height, and the width.
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• m: The desired height

• n: The desired width

def sparse(m, n, nz)

Generates a random sparse matrix. Returns a tuple of the list of values, the height, and the width.

• m: The desired height

• n: The desired width

• nz: The number of non zeros in the matrix

def write_output(filename, precision=6)

Writes the generated matrix to file.

• filename: The filepath for writing the matrix

• precision: The precision with which to write the matrix

8.3.3 SmallkAPI

def parser()

Returns the parsed arguments for the default command line application. The dictionary containing the parsed argu-
ments.

def get_major_version()

Returns the major version of SmallK.

def get_minor_version()

Returns the minor version of SmallK.

def get_patch_level()

Returns the patch level of SmallK.

def get_version_string()

Returns a string representation of the version of SmallK.

def load_matrix(filepath="", height=0, width=0, delim="", buffer=[], matrix=[],
nz=0, row_indices=[], col_offsets=[], column_major=False, sparse_matrix=None):

Load an input matrix.

1. To load a matrix from a file:

• filepath: The path to the input matrix

2. To load a sparse matrix from python:

• height: The height of the sparse matrix

• width: The width of the sparse matrix

• nz: The number of non-zeros in the sparse matrix

62 Chapter 8. Pysmallk API (Python)



SmallK: A Library for Nonnegative Matrix Factorization, Topic Modeling, and Clustering of
Large-Scale Data, Release 1.6.2

• buffer: List of doubles containing the non-zero elements of the sparse matrix

• row_indices: List of integers representing the row indices of the sparse matrix

• col_offsets: List of integers representing the column offsets of the sparse matrix

3. To load a dense matrix from python:

• height: The height of the dense matrix

• width: The width of the dense matrix

• buffer: List of doubles containing the elements of the dense matrix

4. To load a numpy matrix from python:

• matrix: The numpy matrix

• column_major: Boolean for whether or not the matrix is column major (optional)

Note: Internal to SmallK, the matrix is stored in column-major order. When you are loading a numpy matrix, the
assumption is that your matrix is in row-major order. If this is not the case, you can pass column_major=True
in as a keyword argument. When directly loading a dense matrix, the assumption is that your buffer holds the data in
column-major order as well.

def is_matrix_loaded()

Indicates whether or not a matrix has been loaded.

def nmf(k, algorithm, infile_W="", infile_H="", precision=4, min_iter=5, max_
→˓iter=5000, tol=0.005, max_threads=8, outdir=".")

Runs NMF on the loaded matrix using the supplied algorithm and implementation details.

• k: The desired number of clusters

• algorithm: The desired NMF algorithm

• initdir: Initialization for W and H for each leaf (optional)

• precision: Precision for calcuations (optional)

• min_iter: Minimum number of iterations (optional)

• max_iter: Maximum number of iterations (optional)

• tol: Tolerance for determing convergence (optional)

• max_threads: Maximum number of threads to use (optional)

• outdir: Output directory for files (optional)

def get_inputs()

Returns a dictionary of the supplied inputs to the nmf function.

def get_H()

Returns the output H matrix.

def get_W()

Returns the output W matrix.
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def load_dictionary (filepath="", dictionary=[])

Loads a dictionary from either a filepath or a list of dictionary strings.

def hiernmf2(k, format="XML", maxterms=5, tol=0.0001)

Runs HierNMF2 on the loaded matrix.

• k: The desired number of clusters

• format: Output format, XML or JSON (optional)

• maxterms: Maximum number of terms (optional)

• tol: Tolerance to use for determining convergence (optional)

def finalize()

Cleans up the elemental and smallk environment.

8.3.4 Flatclust

def parser()

Returns the parsed arguments for the default command line application. The command line arguemnts are the same as
those for the C++ binary application flatclust.

def load_matrix(**kwargs)

Load an input matrix.

1. To load a matrix from a file:

• filepath: The path to the input matrix

2. To load a sparse matrix from python:

• height: The height of the sparse matrix

• width: The width of the sparse matrix

• nz: The number of non-zeros in the sparse matrix

• buffer: List of doubles containing the non-zero elements of the sparse matrix

• row_indices: List of integers representing the row indices of the sparse matrix

• col_offsets: List of integers representing the column offsets of the sparse matrix

3. To load a sparse matrix from Matrixgen:

• height: The height of the sparse matrix

• width: The width of the sparse matrix

• sparse_matrix: The sparse matrix returned from Matrixgen

4. To load a dense matrix from python:

• height: The height of the dense matrix

• width: The width of the dense matrix

• buffer: List of doubles containing the elements of the dense matrix
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5. To load a numpy matrix from python:

• matrix: The numpy matrix

• column_major: Boolean for whether or not the matrix is column major (optional)

Note: Internal to SmallK, the matrix is stored in column-major order. When you are loading a numpy matrix, the
assumption is that your matrix is in row-major order. If this is not the case, you can pass column_major=True
in as a keyword argument. When directly loading a dense matrix, the assumption is that your buffer holds the data in
column-major order as well.

def load_dictionary (filepath="", dictionary=[])

Loads a dictionary from either a filepath or a list of dictionary strings.

def cluster(k, infile_W='', infile_H='', algorithm="BPP", maxterms=5, verbose=True,
→˓min_iter=5, max_iter=5000, max_threads=8, tol=0.0001)

Runs NMF on the loaded matrix using the supplied algorithm and implementation details.

• k: The desired number of clusters

• infile_W: Initialization for W (optional)

• infile_H: Initialization for H (optional)

• algorithm: The desired NMF algorithm (optional)

• maxterms: Maximum number of terms per cluster (optional)

• verbose: Boolean for whether or not to be verbose (optional)

• min_iter: Minimum number of iterations (optional)

• max_iter: Maximum number of iterations (optional)

• max_threads: Maximum number of threads to use (optional)

• tol: Tolerance for determing convergence (optional)

def get_top_indices()

Return the top term indices for each cluster. The length of the returned array is maxterms*k, with the first maxterms
elements belonging to the first cluster, the second maxterms elements belonging to the second cluster, etc.

def get_top_terms()

Return the top terms for each cluster.The length of the returned array is maxterms*k, with the first maxterms elements
belonging to the first cluster, the second maxterms elements belonging to the second cluster, etc.

def get_assignments()

Return the list of cluster assignments for each document.

def write_output(assignfile, treefile, outdir='./', format='XML')

Writes the flatclust results to files.

• assignfile: The filepath for writing assignments

• fuzzyfile: The filepath for writing fuzzy assignments
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• treefile: The filepath for the tree results

• outdir: The output directory for the output files (optional)

• format: The output format JSON or XML (optional)

def finalize()

Cleans up the elemental and smallk environment.

8.3.5 Hierclust

def parser()

Returns the parsed arguments for the default command line application. The command line arguemnts are the same as
those for the C++ binary application hierclust.

def load_matrix(**kwargs)

Load an input matrix.

1. To load a matrix from a file:

• filepath: The path to the input matrix

2. To load a sparse matrix from python:

• height: The height of the sparse matrix

• width: The width of the sparse matrix

• nz: The number of non-zeros in the sparse matrix

• buffer: List of doubles containing the non-zero elements of the sparse matrix

• row_indices: List of integers representing the row indices of the sparse matrix

• col_offsets: List of integers representing the column offsets of the sparse matrix

3. To load a sparse matrix from Matrixgen:

• height: The height of the sparse matrix

• width: The width of the sparse matrix

• sparse_matrix: The sparse matrix returned from Matrixgen

4. To load a dense matrix from python:

• height: The height of the dense matrix

• width: The width of the dense matrix

• buffer: List of doubles containing the elements of the dense matrix

5. To load a numpy matrix from python:

• matrix: The numpy matrix

• column_major: Boolean for whether or not the matrix is column major (optional)

Note: Internal to SmallK, the matrix is stored in column-major order. When you are loading a numpy matrix, the
assumption is that your matrix is in row-major order. If this is not the case, you can pass column_major=True
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in as a keyword argument. When directly loading a dense matrix, the assumption is that your buffer holds the data in
column-major order as well.

def load_dictionary (filepath="", dictionary=[])

Loads a dictionary from either a filepath or a list of dictionary strings.

def cluster(k, initdir='', maxterms=5, unbalanced=0.1, trial_allowance=3,
→˓verbose=True, flat=0, min_iter=5, max_iter=5000, max_threads=8, tol=0.0001)

Runs NMF on the loaded matrix using the supplied algorithm and implementation details.

• k: The desired number of clusters

• initdir: Initialization for W,H for each k (optional)

• maxterms: Maximum number of terms per cluster (optional)

• unbalanced: Unbalanced parameter (optional)

• trial_allowance: Number of trials to use (optional)

• verbose: Boolean for whether or not to be verbose (optional)

• flat: Whether or not to flatten the results (optional)

• min_iter: Minimum number of iterations (optional)

• max_iter: Maximum number of iterations (optional)

• max_threads: Maximum number of threads to use (optional)

• tol: Tolerance for determing convergence (optional)

def get_top_indices()

Return the top term indices for each cluster. The length of the returned array is maxterms*k, with the first maxterms
elements belonging to the first cluster, the second maxterms elements belonging to the second cluster, etc.

def get_assignments()

Return the list of cluster assignments for each document.

def write_output(assignfile, fuzzyfile, treefile, outdir='./', format='XML')

Writes the flatclust results to files.

• assignfile: The filepath for writing assignments

• fuzzyfile: The filepath for writing fuzzy assignments

• treefile: The filepath for the tree results

• outdir: The output directory for the output files (optional)

• format: The output format JSON or XML (optional)

def finalize()

Cleans up the elemental and smallk environment.
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CHAPTER

NINE

TESTS

Below we provide example output for many of the tests that can be run in the SmallK library. This will provide
guidance for identifying issues with your installation. Of course results will vary on different machines.

9.1 SmallK Test Results

After building the smallk library, the make check command will run a bash script that performs a series of tests on the
code. This is a sample output of those tests:

Build configuration: release
sh tests/scripts/test_smallk.sh ../xdata_github/smallk_data/ | tee smallk_test_
→˓results.txt

*****************************************************
* *
* Testing the smallk interface. *
* *
*****************************************************
WARNING: Could not achieve THREAD_MULTIPLE support.
Smallk major version: 1
Smallk minor version: 6
Smallk patch level: 0
Smallk version string: 1.6.0
Loading matrix...

Running NMF-BPP...

Initializing matrix W...
Initializing matrix H...

parameters:

algorithm: Nonnegative Least Squares with Block Principal Pivoting
stopping criterion: Ratio of Projected Gradients

height: 12411
width: 7984

k: 8
miniter: 1
maxiter: 5000

tol: 0.005
matrixfile: ../xdata_github/smallk_data/reuters.mtx
maxthreads: 8

1: progress metric: (min_iter)
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2: progress metric: 0.35826
3: progress metric: 0.172127
4: progress metric: 0.106297
5: progress metric: 0.0696424
6: progress metric: 0.0538889
7: progress metric: 0.0559478
8: progress metric: 0.0686117
9: progress metric: 0.0788641
10: progress metric: 0.0711522
20: progress metric: 0.00568349

Solution converged after 22 iterations.

Elapsed wall clock time: 0.633 sec.

Writing output files...

Running HierNmf2...

Loading dictionary...

parameters:

height: 12411
width: 7984

matrixfile: ../xdata_github/smallk_data/reuters.mtx
dictfile: ../xdata_github/smallk_data/reuters_dictionary.txt

tol: 0.0001
miniter: 1
maxiter: 5000

maxterms: 5
maxthreads: 8

[1] [2] [3] [4]

Elapsed wall clock time: 551 ms.
9/9 factorizations converged.

Writing output files...
W matrix test passed
H matrix test passed

*****************************************************
* *
* Testing the preprocessor. *
* *
*****************************************************

Command line options:

indir: ../xdata_github/smallk_data/
outdir: current directory

docs_per_term: 3
terms_per_doc: 5

max_iter: 1000
precision: 4

boolean_mode: 0

Loading input matrix ../xdata_github/smallk_data/matrix.mtx
Input file load time: 1.421s.
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Starting iterations...
[1] height: 39771, width: 11237, nonzeros: 877453

Iterations finished.
New height: 39727
New width: 11237
New nonzero count: 877374

Processing time: 0.063s.

Writing output matrix 'reduced_matrix.mtx'
Output file write time: 2.189s.
Writing dictionary file 'reduced_dictionary.txt'
Writing documents file 'reduced_documents.txt'
Dictionary + documents write time: 0.083s.
preprocessor matrix test passed
preprocessor dictionary test passed
preprocessor documents test passed

*****************************************************
* *
* Testing the NMF routines. *
* *
*****************************************************
WARNING: Could not achieve THREAD_MULTIPLE support.
Loading matrix...
Initializing matrix W...
Initializing matrix H...

Command line options:

algorithm: Nonnegative Least Squares with Block Principal Pivoting
stopping criterion: Ratio of Projected Gradients

height: 12411
width: 7984

k: 8
miniter: 1
maxiter: 5000

tol: 0.005
tolcount: 1
verbose: 1

normalize: 1
outprecision: 6
matrixfile: ../xdata_github/smallk_data//reuters.mtx
infile_W: ../xdata_github/smallk_data//nmf_init_w.csv
infile_H: ../xdata_github/smallk_data//nmf_init_h.csv

outfile_W: w.csv
outfile_H: h.csv

maxthreads: 8

1: progress metric: (min_iter)
2: progress metric: 0.35826
3: progress metric: 0.172127
4: progress metric: 0.106297
5: progress metric: 0.0696424
6: progress metric: 0.0538889
7: progress metric: 0.0559478
8: progress metric: 0.0686117
9: progress metric: 0.0788641
10: progress metric: 0.0711522
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20: progress metric: 0.00568349

Solution converged after 22 iterations.

Elapsed wall clock time: 0.673 sec.

Writing output files...
NMF W matrix test passed
NMF H matrix test passed

*****************************************************
* *
* Testing hierclust. *
* *
*****************************************************
-------------------------------

Reuters matrix, 12 clusters

-------------------------------
WARNING: Could not achieve THREAD_MULTIPLE support.
loading dictionary...
loading matrix...

Command line options:

height: 12411
width: 7984

matrixfile: ../xdata_github/smallk_data//reuters.mtx
initdir: ../xdata_github/smallk_data//test/matrices.reuters/

dictfile: ../xdata_github/smallk_data//reuters_dictionary.txt
assignfile: assignments_12.csv

format: XML
treefile: tree_12.xml
clusters: 12

tol: 0.0001
outdir:
miniter: 1
maxiter: 5000

maxterms: 5
maxthreads: 8
unbalanced: 0.1

trial_allowance: 3
flat: 0

verbose: 1

[1] [2] [3] [4] [5] [6] dropping 20 items ...
[7] [8] [9] [10] [11]

Elapsed wall clock time: 2.758 s.
26/26 factorizations converged.

Writing output files...
XML file test passed
assignment file test passed
-------------------------------

20News matrix, 15 clusters
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-------------------------------
WARNING: Could not achieve THREAD_MULTIPLE support.
loading dictionary...
loading matrix...

Command line options:

height: 39727
width: 11237

matrixfile: ../xdata_github/smallk_data//news20.mtx
initdir: ../xdata_github/smallk_data//test/matrices.20news/

dictfile: ../xdata_github/smallk_data//news20_dictionary.txt
assignfile: assignments_15.csv

format: XML
treefile: tree_15.xml
clusters: 15

tol: 0.0001
outdir:
miniter: 1
maxiter: 5000

maxterms: 5
maxthreads: 8
unbalanced: 0.1

trial_allowance: 3
flat: 0

verbose: 1

[1] [2] [3] dropping 30 items ...
[4] [5] dropping 132 items ...
[6] [7] [8] [9] [10] dropping 41 items ...
[11] dropping 51 items ...
[12] dropping 22 items ...
[13] dropping 85 items ...
[14]

Elapsed wall clock time: 10.308 s.
41/41 factorizations converged.

Writing output files...
XML file test passed
assignment file test passed

*****************************************************
* *
* Testing flatclust. *
* *
*****************************************************
WARNING: Could not achieve THREAD_MULTIPLE support.
loading dictionary...
loading matrix...
Initializing matrix W...
Initializing matrix H...

Command line options:

height: 256
width: 256

matrixfile: ../xdata_github/smallk_data//rnd_256_256.csv
infile_W: ../xdata_github/smallk_data//flatclust_init_w.csv
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infile_H: ../xdata_github/smallk_data//flatclust_init_h.csv
dictfile: ../xdata_github/smallk_data//reuters_dictionary.txt

assignfile: assignments_16.csv
fuzzyfile: assignments_fuzzy_16.csv

format: XML
clustfile: clusters_16.xml
algorithm: HALS
clusters: 16

tol: 0.0001
outdir:
miniter: 1
maxiter: 5000

maxterms: 5
maxthreads: 8

verbose: 1

1: progress metric: (min_iter)
2: progress metric: 0.635556
3: progress metric: 0.490817
4: progress metric: 0.479135
5: progress metric: 0.474986
6: progress metric: 0.44968
7: progress metric: 0.422542
8: progress metric: 0.407662
9: progress metric: 0.395145
10: progress metric: 0.379238
20: progress metric: 0.272868
30: progress metric: 0.168386
40: progress metric: 0.109147
50: progress metric: 0.0767327
60: progress metric: 0.0488545
70: progress metric: 0.036226
80: progress metric: 0.0307648
90: progress metric: 0.0266116
100: progress metric: 0.0226963
110: progress metric: 0.0188616
120: progress metric: 0.0158307
130: progress metric: 0.0137605
140: progress metric: 0.0127888
150: progress metric: 0.0123962
160: progress metric: 0.0124734
170: progress metric: 0.0123563
180: progress metric: 0.0122163
190: progress metric: 0.0120643
200: progress metric: 0.0117647
210: progress metric: 0.0114894
220: progress metric: 0.0110467
230: progress metric: 0.0107816
240: progress metric: 0.0105239
250: progress metric: 0.0103824
260: progress metric: 0.0100915
270: progress metric: 0.00965073
280: progress metric: 0.00938526
290: progress metric: 0.00914129
300: progress metric: 0.00896701
310: progress metric: 0.00886729
320: progress metric: 0.00841059
330: progress metric: 0.007793

74 Chapter 9. Tests



SmallK: A Library for Nonnegative Matrix Factorization, Topic Modeling, and Clustering of
Large-Scale Data, Release 1.6.2

340: progress metric: 0.00740095
350: progress metric: 0.00708869
360: progress metric: 0.00683069
370: progress metric: 0.00672093
380: progress metric: 0.00687906
390: progress metric: 0.00703777
400: progress metric: 0.00721928
410: progress metric: 0.00729384
420: progress metric: 0.00718332
430: progress metric: 0.00722893
440: progress metric: 0.00726766
450: progress metric: 0.00739665
460: progress metric: 0.00769819
470: progress metric: 0.00814673
480: progress metric: 0.008566
490: progress metric: 0.00877955
500: progress metric: 0.00884221
510: progress metric: 0.0088057
520: progress metric: 0.00852345
530: progress metric: 0.00797952
540: progress metric: 0.00749354
550: progress metric: 0.00689316
560: progress metric: 0.00623287
570: progress metric: 0.00576619
580: progress metric: 0.00541125
590: progress metric: 0.00501715
600: progress metric: 0.00466547
610: progress metric: 0.00432811
620: progress metric: 0.00412669
630: progress metric: 0.00383406
640: progress metric: 0.00352802
650: progress metric: 0.00331556
660: progress metric: 0.00315735
670: progress metric: 0.00304253
680: progress metric: 0.00296627
690: progress metric: 0.00289013
700: progress metric: 0.00279647
710: progress metric: 0.00271036
720: progress metric: 0.00261087
730: progress metric: 0.0025158
740: progress metric: 0.00245123
750: progress metric: 0.00237435
760: progress metric: 0.00231126
770: progress metric: 0.00228199
780: progress metric: 0.00227623
790: progress metric: 0.00228185
800: progress metric: 0.00227993
810: progress metric: 0.00228216
820: progress metric: 0.00228018
830: progress metric: 0.00229096
840: progress metric: 0.00232403
850: progress metric: 0.00234957
860: progress metric: 0.00227868
870: progress metric: 0.00210786
880: progress metric: 0.00195462
890: progress metric: 0.00183587
900: progress metric: 0.00173358
910: progress metric: 0.0016405
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920: progress metric: 0.00156422
930: progress metric: 0.00150835
940: progress metric: 0.00146594
950: progress metric: 0.00143261
960: progress metric: 0.00137378
970: progress metric: 0.00131989
980: progress metric: 0.00126626
990: progress metric: 0.0012164
1000: progress metric: 0.00117061
1010: progress metric: 0.00112539
1020: progress metric: 0.00108626
1030: progress metric: 0.00105192
1040: progress metric: 0.00102131
1050: progress metric: 0.000992069
1060: progress metric: 0.000965259
1070: progress metric: 0.000938949
1080: progress metric: 0.000911962
1090: progress metric: 0.000884505
1100: progress metric: 0.000854904
1110: progress metric: 0.000820121
1120: progress metric: 0.000785245
1130: progress metric: 0.000752513
1140: progress metric: 0.000723279
1150: progress metric: 0.000697698
1160: progress metric: 0.000680904
1170: progress metric: 0.000652152
1180: progress metric: 0.000628268
1190: progress metric: 0.000612413
1200: progress metric: 0.000596834
1210: progress metric: 0.000580674
1220: progress metric: 0.000556549
1230: progress metric: 0.000535666
1240: progress metric: 0.00051492
1250: progress metric: 0.000496234
1260: progress metric: 0.000481147
1270: progress metric: 0.000461294
1280: progress metric: 0.000440802
1290: progress metric: 0.000419049
1300: progress metric: 0.000398007
1310: progress metric: 0.000376203
1320: progress metric: 0.000355811
1330: progress metric: 0.00033729
1340: progress metric: 0.000318932
1350: progress metric: 0.000302528
1360: progress metric: 0.000287961
1370: progress metric: 0.00027486
1380: progress metric: 0.00026403
1390: progress metric: 0.000255504
1400: progress metric: 0.000248646
1410: progress metric: 0.000242996
1420: progress metric: 0.000239243
1430: progress metric: 0.000236852
1440: progress metric: 0.000235313
1450: progress metric: 0.000234465
1460: progress metric: 0.000234154
1470: progress metric: 0.000234253
1480: progress metric: 0.00023487
1490: progress metric: 0.000237223
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1500: progress metric: 0.000240043
1510: progress metric: 0.000243896
1520: progress metric: 0.00024867
1530: progress metric: 0.000253981
1540: progress metric: 0.000260239
1550: progress metric: 0.000266795
1560: progress metric: 0.000273529
1570: progress metric: 0.000280678
1580: progress metric: 0.000287273
1590: progress metric: 0.000292288
1600: progress metric: 0.000296475
1610: progress metric: 0.000299556
1620: progress metric: 0.00030244
1630: progress metric: 0.000306148
1640: progress metric: 0.000310299
1650: progress metric: 0.000314674
1660: progress metric: 0.000319052
1670: progress metric: 0.000323906
1680: progress metric: 0.000329536
1690: progress metric: 0.000335913
1700: progress metric: 0.000342834
1710: progress metric: 0.000351167
1720: progress metric: 0.000352515
1730: progress metric: 0.000348749
1740: progress metric: 0.000345684
1750: progress metric: 0.000343139
1760: progress metric: 0.000340867
1770: progress metric: 0.000339052
1780: progress metric: 0.000337038
1790: progress metric: 0.000335244
1800: progress metric: 0.000333452
1810: progress metric: 0.000332111
1820: progress metric: 0.000330198
1830: progress metric: 0.000325983
1840: progress metric: 0.000321473
1850: progress metric: 0.000316999
1860: progress metric: 0.000312054
1870: progress metric: 0.000305176
1880: progress metric: 0.000294684
1890: progress metric: 0.000284482
1900: progress metric: 0.000274905
1910: progress metric: 0.000265684
1920: progress metric: 0.000256761
1930: progress metric: 0.000248203
1940: progress metric: 0.000239613
1950: progress metric: 0.000230677
1960: progress metric: 0.00022218
1970: progress metric: 0.000214089
1980: progress metric: 0.00020621
1990: progress metric: 0.000196915
2000: progress metric: 0.000187712
2010: progress metric: 0.000179199
2020: progress metric: 0.00017137
2030: progress metric: 0.000164158
2040: progress metric: 0.000157751
2050: progress metric: 0.000152485
2060: progress metric: 0.000147217
2070: progress metric: 0.000142083
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2080: progress metric: 0.000137148
2090: progress metric: 0.000132379
2100: progress metric: 0.000127922
2110: progress metric: 0.000123617
2120: progress metric: 0.000119548
2130: progress metric: 0.000115684
2140: progress metric: 0.000111997
2150: progress metric: 0.000108389
2160: progress metric: 0.000104838
2170: progress metric: 0.000101387

Solution converged after 2175 iterations.

Elapsed wall clock time: 1.022 sec.

XML file test passed
assignment file test passed
fuzzy assignment file test passed

***** SmallK: All tests passed. *****
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12.1 Getting the code and instructions

These are the ways to obtain the code:

1. The SmallK code tarball is at SmallK64.

2. There is also a code repository here65.

3. And a data repository smallk_data66. The data repository will be needed to run the tests and example code.

Installation and build instructions can be found at:

1. Online installation instructions67.

2. A pdf of the installation instructions68 is also included at these sites.

12.2 Contact Info

For comments, questions, bug reports, suggestions, etc., contact:

Barry Drake
Research Scientist
Information and Communications Laboratory (ICL)
Information and Cyber Sciences Directorate (ICSD)
Georgia Tech Research Institute (GTRI)
75 5TH St. NW STE 900
ATLANTA, GA 30308-1018
barry.drake@gtri.gatech.edu

Stephen Lee-Urban
Research Scientist
Information and Communications Laboratory (ICL)
Information and Cyber Sciences Directorate (ICSD)
Georgia Tech Research Institute (GTRI)

64 https://github.com/smallk/smallk.github.io/tree/master/code
65 https://github.com/smallk/smallk
66 https://github.com/smallk/smallk_data
67 http://smallk.github.io/index.html
68 http://smallk.github.io/doc/smallk_readme.pdf
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